\qquad

1. Determine the domain of

$$
f(x)=\frac{\sqrt{x+1}}{x^{2}-x}
$$

$$
\begin{aligned}
& x+1 \geqslant 0 \Rightarrow x \geqslant-1 \\
& x^{2}-x \neq 0 \Rightarrow x(x-1) \neq 0 \Rightarrow x \neq 0,1
\end{aligned}
$$

$$
\text { domain }=[-1,0) \cup(0,1) \cup(1, \infty)
$$

2.

$$
f(x)= \begin{cases}x^{2} & x \geq 0 \\ -x & x<0\end{cases}
$$

a. Graph the function $f(x)$.
b. Let $g(x)=f(f(x))$. Compute $g(2), g(0), g(-2)$.
a.

$$
\text { b. } \quad \begin{aligned}
& g(2)=f(f(2))=f(4)=16 \\
& g(0)=f(f(0))=f(0)=0 \\
& g(-2)=f(f(-2))=f(2)=4
\end{aligned}
$$

3. Suppose the annual revenue, in millions of dollars, of a company is $R(t)=t^{2}+2 t+1$ where t is measured in years and $t=0$ corresponds to the year 2000. The annual cost, in millions of dollars, for the company is $C(t)=2 t+1$.
a. Find the formula for the profit function $P(t)$.
b. What is the average profit over the first four years (2000-2004)?
a.

$$
\begin{aligned}
P(t) & =R(t)-C(t) \\
& =\left(t^{2}+2 t+1\right)-(2 t+1) \\
& =t^{2} \quad(\text { millions })
\end{aligned}
$$

b.

$$
\begin{aligned}
\text { average profit } & =\frac{p(1)+p(2)+p(3)+p(4)}{4} \\
& =\frac{1^{2}+2^{2}+3^{2}+4^{2}}{4} \\
& =\frac{1+4+9+16}{4} \\
& =\frac{30}{4} \\
& =7.5 \text { (millions) }
\end{aligned}
$$

