1. Find the indicated limit. If the limiting value is infinite, indicate whether it is $+\infty$ or $-\infty$.
a. $\lim _{x \rightarrow 1} \frac{x^{2}+4 x-5}{x^{2}-1}$
b. $\lim _{x \rightarrow \infty} \frac{2 x^{2}-3 x}{x^{2}-1}$
c. $\lim _{x \rightarrow-\infty} \frac{x^{3}+x}{2 x^{2}+1}$
d. $\lim _{x \rightarrow 1^{-}} \frac{1}{x-1}$
2. Compute the derivative of the given function and find the slope of the line that is tangent to its graph for the specified value of the independent variable.
a. $f(x)=x^{2}-1 ; \quad x=-1$
b. $g(t)=\sqrt{t} ; \quad t=4$
3. Show that the equation $\sqrt{x}=x^{2}+2 x-1$ must have at least one solution on the interval $0 \leq x \leq 1$. hint: use intermediate value property of continuous functions.

Bonus Problem. A toy rocket rises vertically in such a way that t seconds after liftoff, it is $h(t)=-16 t^{2}+200 t$ feet above the ground.
a. How high is the rocket after 6 seconds?
b. What is the average velocity of the rocket over the first 6 seconds?
c. What is the velocity of the rocket at liftoff? What is its velocity after 6 seconds?

