213 Final Exam Review Part 1

December 8, 2013

1. Compute the derivatives of the following functions:
(a) $f(x)=x^{2} e^{x}$;
(b) $f(x)=e \ln (2)$;
(c) $f(x)=\frac{x^{2}+2 x+3}{x^{3}+1}$;
(d) $f(x)=e^{x^{2}+4 x+1}$;
(e) $f(x)=\frac{2 x e^{x^{3}}}{x^{3}+1}$;
(f) $f(x)=e^{e^{x}}$;
(g) $f(x)=\ln \left(x^{2}+e^{x+1}\right)$.
2. Compute $f^{\prime}(0)$ for all of the above functions.
3. Graph the following functions by finding, and classifying, critical points, finding inflection points, and computing horizontal asymptotes:
(a) $x^{3}-3 x+1$
(b) $x e^{x}$;
4. Find the maximum area of a rectangle which is circumscribed in a circle of radius 1.
5. Compute the following indefinite integrals:
(a) $\int\left(x^{2}+3 x+1\right) d x$;
(b) $\int \frac{x}{x+1} d x$;
(c) $\int \frac{2 x}{x^{2}+1} d x$;
(d) $\int x^{2} \ln (x) d x$;
(e) $\int x^{3} \sqrt{x^{2}+1} d x$;
(f) $\int e^{x}(x+1) d x$;
(g) $\int\left(\ln (x)-\frac{1}{x^{2}+2 x+1}\right) d x$.
6. Evaluate all of the above integrals between 1 and 3 .
7. Estimate the following integrals using both Simpson's Rule and the Trapezoid Rule for $n=2$ and $n=4$:
(a) $\int_{0}^{2} e^{-x^{2}} d x$;
(b) $\int_{1}^{3} \frac{d x}{x^{2}+1}$;
(c) $\int_{-1}^{1} \frac{x+1}{\ln \left(x^{2}+2\right)}$.
