213 Final Exam Review Part 1

December 8, 2013

1. Compute the derivatives of the following functions:

(a)
$$f(x) = x^2 e^x$$
;

(b)
$$f(x) = e \ln(2);$$

(c)
$$f(x) = \frac{x^2 + 2x + 3}{x^3 + 1}$$
;
(d) $f(x) = e^{x^2 + 4x + 1}$;

(d)
$$f(x) = e^{x^2 + 4x + 1}$$

(e)
$$f(x) = \frac{2xe^{x^3}}{x^3+1}$$
;

(f)
$$f(x) = e^{e^x}$$
;

(g)
$$f(x) = \ln(x^2 + e^{x+1})$$
.

2. Compute f'(0) for all of the above functions.

3. Graph the following functions by finding, and classifying, critical points, finding inflection points, and computing horizontal asymptotes:

(a)
$$x^3 - 3x + 1$$

(b)
$$xe^x$$
;

4. Find the maximum area of a rectangle which is circumscribed in a circle of radius 1.

5. Compute the following indefinite integrals:

(a)
$$\int (x^2 + 3x + 1)dx$$
;

(b)
$$\int \frac{x}{x+1} dx$$
;

(c)
$$\int \frac{2x}{x^2+1} dx$$
;

(d)
$$\int x^2 \ln(x) dx$$
;

(e)
$$\int x^3 \sqrt{x^2 + 1} dx;$$

(f)
$$\int e^x(x+1)dx$$
;

(g)
$$\int (\ln(x) - \frac{1}{x^2 + 2x + 1}) dx$$
.

6. Evaluate all of the above integrals between 1 and 3.

7. Estimate the following integrals using both Simpson's Rule and the Trapezoid Rule for n=2 and

1

(a)
$$\int_0^2 e^{-x^2} dx$$
;

(b)
$$\int_1^3 \frac{dx}{x^2+1}$$
;

(c)
$$\int_{-1}^{1} \frac{x+1}{\ln(x^2+2)}$$
.