Math 213 Final Exam Review - Part 2

- 1. Find the minimum value of the function $z = x^2 + y^2 + xy 2x + 2y$.
- 2. Find all critical points of the function $z = \ln(1 + x^2 + y^2)$ and determine their type.
- **3.** Let S = yz + xz + xy. Use Lagrange multipliers to minimize S under the constraint xyz = 1000.
- **4.** Find the line of best fit to the data points $\{(-1,1),(0,0),(2,0)\}$.
- 5. Find the general solution to the differential equation

$$xy' = \frac{y^2}{r^2}.$$

6. Find the general solution to the differential equation

$$y' = xy + x.$$

7. Find the particular solution with initial condition y(1) = 0 to the differential equation

$$y' + \frac{1}{x}y = e^{-x^2}.$$

- **8.** Three coins are tossed.
 - a) What is the sample space?
 - b) What is the event that there are exactly two heads?
 - c) What is the probability of getting two heads?
 - d) Let the number of heads be a random variable x. What is the expected value of x?
 - e) What is the variance of x?
- **9.** A random variable x has probability density function

$$f(x) = \frac{3}{4}x(2-x), \ 0 \le x \le 2.$$

- a) What is the probability that $x \leq 1$?
- b) What is the mean of x?
- c) What is the variance of x?
- d) What is the standard deviation of x?
- 10. A random variable x has probability density function

$$f(x) = ke^{-x}, \ 0 \le x \le 1.$$

- a) What should the constant k be?
- b) What is the mean of x?

- c) What is the variance of x?
- 11. Classify the following functions as one of the following: paraboloid, ellipsoid, hyperbolic paraboloid, hyperboloid of one sheet, hyperboloid of two sheets, or none of the above.

a)
$$z = x^2 - y^2$$

a)
$$z = x^2 - y^2$$

b) $z = x^2 + y^2$

c)
$$z^2 = x^2 + 3y^2$$

d)
$$z^2 + x^2 + 4y^2 = 1$$

e)
$$z^2 + x^2 - 5y^2 = 1$$

f)
$$z^2 - x^2 - 6y^2 = 1$$

12. Consider the differential equation

$$y' = y^2 + x$$

with initial condition y(0) = 1. Use Euler's method to estimate y(2) using step size 1 and using step size 1/2.

13. The rate of decomposition of radioactive carbon is proportional to the amount present at any time. The half-life of radioactive carbon is 5715 year. What percent of a present amount will remain after 1000 years?