Math 213 Final Exam Review - Part 2 Solutions

1. Solving

$$
\begin{aligned}
& z_{x}=2 x+y-2=0 \\
& z_{y}=2 y+x+2=0
\end{aligned}
$$

gives $x=2$ and $y=-2$. Plug in to z, we get

$$
z_{\min }=-4 \text {. }
$$

2. Since $\ln (u)$ strictly increasing in u, we may just look at the function

$$
z=1+x^{2}+y^{2} .
$$

Solving

$$
\begin{aligned}
& z_{x}=2 x=0 \\
& z_{y}=2 y=0
\end{aligned}
$$

gives $x=0$ and $y=0$. This shows that $(x, y)=(0,0)$ is the unique critical point. To determine the type, we find

$$
\begin{aligned}
& z_{x x}=2 \\
& z_{y y}=2 \\
& z_{x y}=0
\end{aligned}
$$

thus the determinant $d=z_{x x} z_{y y}-\left(z_{x y}\right)^{2}>0$. Since $z_{x x}=2>0$, we conclude that at $(0,0)$ the function attains a local minimum, according to the second derivative test.
3. Let

$$
L=(y z+x z+x y)-\lambda(x y z-1000)
$$

and set the derivatives equal to zero 0 , we get

$$
\begin{aligned}
& L_{x}=y+z-\lambda y z=0 \\
& L_{y}=x+z-\lambda x z=0 \\
& L_{z}=x+y-\lambda x y=0 \\
& L_{\lambda}=-x y z+1000=0
\end{aligned}
$$

Solve the first equation for y, we get

$$
y=\frac{-z}{1-\lambda z} .
$$

Solve the second equation for x, we get

$$
x=\frac{-z}{1-\lambda z} .
$$

This shows that $x=y$. Similarly, one can show that $y=z$ from the second and third equations. Now plug in $x=y=z$ to the last equation, we get

$$
-x^{3}+1000=0
$$

and hence $x=10$. We can now conclude that at $(x, y, z)=(10,10,10), S=y z+x z+x y$ attains its minimum $S_{\text {min }}=300$.
4. Suppose that the equation of the line is

$$
f(x)=a x+b
$$

Then the sum of squared errors is given by

$$
\begin{aligned}
S & =(f(-1)-1)^{2}+(f(0)-0)^{2}+(f(2)-0)^{2} \\
& =(-a+b-1)^{2}+b^{2}+(2 a+b)^{2} .
\end{aligned}
$$

Set the derivatives equal to zero 0 , we get

$$
\begin{aligned}
& S_{a}=-2(-a+b-1)+0+4(2 a+b)=0 \\
& S_{b}=2(-a+b-1)+2 b+2(2 a+b)=0
\end{aligned}
$$

In other words,

$$
\begin{aligned}
& 2(5 a+b+1)=0 \\
& 2(a+3 b-1)=0
\end{aligned}
$$

Solving these equations we get

$$
a=-\frac{2}{7}, b=\frac{3}{7} .
$$

So the line of best fit is

$$
f(x)=-\frac{2}{7} x+\frac{3}{7} \text {. }
$$

5. Rewrite the equation as

$$
x \frac{d y}{d x}=\frac{y^{2}}{x^{2}},
$$

and further as

$$
\frac{d y}{y^{2}}=\frac{d x}{x^{3}}
$$

Integrate each side, we get

$$
\int y^{-2} d y=\int x^{-3} d x
$$

that is, by the power rule,

$$
-\frac{1}{y}=-\frac{1}{2 x^{2}}+C
$$

Solving for y, we get

$$
y=\frac{1}{\frac{1}{2 x^{2}}+C} .
$$

6. Rewrite the equation as

$$
\frac{d y}{d x}=x(y+1),
$$

and further as

$$
\frac{d y}{y+1}=x d x
$$

Integrate each side, we get

$$
\ln (y+1)=\frac{x^{2}}{2}+C
$$

Take the exponential of each side, we get

$$
y+1=e^{\frac{x^{2}}{2}+C}=C e^{\frac{x^{2}}{2}} .
$$

So

$$
y=C e^{\frac{x^{2}}{2}}-1 \text {. }
$$

7. To use the method integrating factor, we let

$$
P(x)=\frac{1}{x}, Q(x)=e^{-x^{2}} .
$$

Then

$$
u(x)=e^{\int P(x) d x}=e^{\int \frac{1}{x} d x}=e^{\ln x}=x
$$

and thus

$$
\begin{aligned}
y & =\frac{1}{u(x)}\left(\int u(x) Q(x) d x\right) \\
& =\frac{1}{x}\left(\int x e^{-x^{2}} d x\right) \\
& =\frac{1}{x}\left(\frac{1}{-2} \int e^{-x^{2}} d\left(-x^{2}\right)\right) \\
& =\frac{1}{x}\left(-\frac{1}{2} \int e^{u} d u\right) \\
& =\frac{1}{x}\left(-\frac{1}{2} e^{u}+C\right) \\
& =\frac{1}{x}\left(-\frac{1}{2} e^{-x^{2}}+C\right) .
\end{aligned}
$$

On the other hand, since $y=0$ when $x=1$, we see that

$$
0=-\frac{1}{2} e^{-1}+C
$$

i.e.

$$
C=\frac{1}{2} e^{-1} .
$$

So

$$
y=\frac{1}{x}\left(-\frac{1}{2} e^{-x^{2}}+\frac{1}{2} e^{-1}\right)=\frac{1}{2 x}\left(-e^{-x^{2}}+e^{-1}\right) .
$$

8. a) The sample space is

$$
\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\} .
$$

b) The event that there are exactly two heads consists of

$$
\{H H T, H T H, T H H\} .
$$

c) $\frac{3}{8}$.
d) We have the following table for the probability distribution of x.

x	0	1	2	3
$P(x)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

Hence the expected value of x is

$$
\mu=0 \cdot \frac{1}{8}+1 \cdot \frac{3}{8}+2 \cdot \frac{3}{8}+3 \cdot \frac{1}{8}=\frac{3}{2} .
$$

e) The variance of x is given by

$$
\left(0-\frac{3}{2}\right)^{2} \cdot \frac{1}{8}+\left(1-\frac{3}{2}\right)^{2} \cdot \frac{3}{8}+\left(2-\frac{3}{2}\right)^{2} \cdot \frac{3}{8}+\left(3-\frac{3}{2}\right)^{2} \cdot \frac{1}{8}=\frac{3}{4} .
$$

9. a)

$$
P(x \leq 1)=\int_{0}^{1} \frac{3}{4} x(2-x) d x=\frac{3}{4} \int_{0}^{1}\left(2 x-x^{2}\right) d x=\frac{3}{4}\left[x^{2}-\frac{x^{3}}{3}\right]_{0}^{1}=\frac{1}{2} .
$$

b)

$$
\mu=\int x f(x) d x=\int_{0}^{2} x \cdot \frac{3}{4} x(2-x) d x=\frac{3}{4} \int_{0}^{2}\left(2 x^{2}-x^{3}\right) d x=1 .
$$

c)

$$
V=\left(\int x^{2} f(x) d x\right)-\mu^{2}=\left(\int_{0}^{2} x^{2} \cdot \frac{3}{4} x(2-x) d x\right)-1=\frac{1}{5} .
$$

d) $\sigma=\sqrt{V}=\frac{1}{\sqrt{5}}$.
10. a) We should have

$$
\int_{0}^{1} k e^{-x} d x=1
$$

But the left hand side is equal to

$$
k \int_{0}^{1} e^{-x} d x=k\left[-e^{-x}\right]_{0}^{1}=k\left(-e^{-1}+1\right)
$$

So

$$
k=\frac{1}{1-e^{-1}} \approx 1.582
$$

b)

$$
\begin{aligned}
\mu & =\int x f(x) d x=\int_{0}^{1} x\left(k e^{-x}\right) d x=k \int_{0}^{1} x e^{-x} d x \\
& =k \int_{0}^{1} x d\left(-e^{-x}\right)=k\left(-\left.x e^{-x}\right|_{0} ^{1}+\int_{0}^{1} e^{-x} d x\right) \\
& =k\left(-e^{-1}+\left[-e^{-x}\right]_{0}^{1}\right)=k\left(-2 e^{-1}+1\right) \\
& =\frac{1-2 e^{-1}}{1-e^{-1}} \approx 0.418 .
\end{aligned}
$$

c)

$$
\begin{aligned}
V & =\int x^{2} f(x) d x-\mu^{2}=\int_{0}^{1} x^{2}\left(k e^{-x}\right) d x-\mu^{2} \\
& =k \int_{0}^{1} x^{2} e^{-x} d x-\mu^{2}(\text { integrate by parts twice... }) \\
& =k\left(2-5 e^{-1}\right)-\mu^{2} \\
& \approx 0.079 .
\end{aligned}
$$

11. a) hyperbolic paraboloid
b) paraboloid
c) none of the above (elliptic cone)
d) ellipsoid
e) hyperboloid of one sheet
f) hyperboloid of two sheets
12. Using step size 1 , we have

$$
\begin{aligned}
y(0) & =1 \\
y(1) & \approx y(0)+1 \cdot y^{\prime}(0) \\
& =1+\left(y^{2}(0)+0\right) \\
& \approx 1+\left(1^{2}+0\right) \\
& =2 \\
y(2) & \approx y(1)+1 \cdot y^{\prime}(1)
\end{aligned}
$$

$$
\begin{aligned}
& \approx 2+\left(y^{2}(1)+1\right) \\
& \approx 2+\left(2^{2}+1\right) \\
& =7
\end{aligned}
$$

Using step size $1 / 2$, we have

$$
\begin{aligned}
& y(0)=1 \\
& y\left(\frac{1}{2}\right) \approx y(0)+\frac{1}{2} y^{\prime}(0) \\
& =1+\frac{1}{2}\left(y^{2}(0)+0\right) \\
& \approx 1+\frac{1}{2}\left(1^{2}+0\right) \\
& =\frac{3}{2} \\
& y(1) \approx y\left(\frac{1}{2}\right)+\frac{1}{2} y^{\prime}\left(\frac{1}{2}\right) \\
& \approx \frac{3}{2}+\frac{1}{2}\left(y^{2}\left(\frac{1}{2}\right)+\frac{1}{2}\right) \\
& \approx \frac{3}{2}+\frac{1}{2}\left(\left(\frac{3}{2}\right)^{2}+\frac{1}{2}\right) \\
& =\frac{23}{8} \text {. } \\
& y\left(\frac{3}{2}\right) \approx y(1)+\frac{1}{2} y^{\prime}(1) \\
& \approx \frac{23}{8}+\frac{1}{2}\left(y^{2}(1)+1\right) \\
& \approx \frac{23}{8}+\frac{1}{2}\left(\left(\frac{23}{8}\right)^{2}+1\right) \\
& =\frac{961}{128} \text {. } \\
& y(2) \approx y\left(\frac{3}{2}\right)+\frac{1}{2} y^{\prime}\left(\frac{3}{2}\right) \\
& \approx \frac{961}{128}+\frac{1}{2}\left(y^{2}\left(\frac{3}{2}\right)+\frac{3}{2}\right) \\
& \approx \frac{961}{128}+\frac{1}{2}\left(\left(\frac{961}{128}\right)^{2}+\frac{3}{2}\right) \\
& \approx 36.44
\end{aligned}
$$

13. Let $A(t)$ be the amount of radioactive carbon present after t years. Since the rate of decrease is proportional to $A(t)$, we have

$$
\frac{d A}{d t}=-k A
$$

for some positive constant k. Solving this equation by separating the variables we get

$$
A(t)=C e^{-k t}
$$

for some positive constant C.
Now since the half-life of radioactive carbon is 5715 year, we have

$$
A(5715)=\frac{1}{2} A(0)
$$

i.e.

$$
C e^{-5715 k}=\frac{1}{2} C .
$$

From this we solve

$$
k=\frac{\ln 2}{5715} .
$$

Thus the percentage of the present amount that will remain after 1000 years is

$$
\frac{A(1000)}{A(0)}=\frac{C e^{-1000 k}}{C}=e^{-1000 \frac{\ln 2}{5715}} \approx 0.88=88 \% .
$$

