
Math 213 Final Exam Review - Part 2 Solutions

1. Solving
zx = 2x+ y − 2 = 0

zy = 2y + x+ 2 = 0

gives x = 2 and y = −2 . Plug in to z, we get

zmin = −4 .

2. Since ln(u) strictly increasing in u, we may just look at the function

z = 1 + x2 + y2.

Solving
zx = 2x = 0

zy = 2y = 0

gives x = 0 and y = 0. This shows that (x, y) = (0, 0) is the unique critical point. To

determine the type, we find
zxx = 2

zyy = 2

zxy = 0

thus the determinant d = zxxzyy − (zxy)
2 > 0. Since zxx = 2 > 0, we conclude that at (0, 0)

the function attains a local minimum , according to the second derivative test.

3. Let
L = (yz + xz + xy)− λ(xyz − 1000)

and set the derivatives equal to zero 0, we get

Lx = y + z − λyz = 0

Ly = x+ z − λxz = 0

Lz = x+ y − λxy = 0

Lλ = −xyz + 1000 = 0

Solve the first equation for y, we get

y =
−z

1− λz
.

Solve the second equation for x, we get

x =
−z

1− λz
.



This shows that x = y. Similarly, one can show that y = z from the second and third
equations. Now plug in x = y = z to the last equation, we get

−x3 + 1000 = 0

and hence x = 10. We can now conclude that at (x, y, z) = (10, 10, 10) , S = yz + xz + xy

attains its minimum Smin = 300 .

4. Suppose that the equation of the line is

f(x) = ax+ b.

Then the sum of squared errors is given by

S = (f(−1)− 1)2 + (f(0)− 0)2 + (f(2)− 0)2

= (−a+ b− 1)2 + b2 + (2a+ b)2.

Set the derivatives equal to zero 0, we get

Sa = −2(−a+ b− 1) + 0 + 4(2a+ b) = 0

Sb = 2(−a+ b− 1) + 2b+ 2(2a+ b) = 0.

In other words,
2(5a+ b+ 1) = 0

2(a+ 3b− 1) = 0.

Solving these equations we get

a = −2

7
, b =

3

7
.

So the line of best fit is

f(x) = −2

7
x+

3

7
.

5. Rewrite the equation as

x
dy

dx
=
y2

x2
,

and further as
dy

y2
=
dx

x3
.

Integrate each side, we get ∫
y−2dy =

∫
x−3dx

that is, by the power rule,

−1

y
= − 1

2x2
+ C.



Solving for y, we get

y =
1

1
2x2

+ C
.

6. Rewrite the equation as
dy

dx
= x(y + 1),

and further as
dy

y + 1
= xdx.

Integrate each side, we get

ln(y + 1) =
x2

2
+ C.

Take the exponential of each side, we get

y + 1 = e
x2

2
+C = Ce

x2

2 .

So

y = Ce
x2

2 − 1 .

7. To use the method integrating factor, we let

P (x) =
1

x
, Q(x) = e−x

2

.

Then
u(x) = e

∫
P (x)dx = e

∫
1
x
dx = elnx = x

and thus

y =
1

u(x)

(∫
u(x)Q(x)dx

)
=

1

x

(∫
xe−x

2

dx
)

=
1

x

( 1

−2

∫
e−x

2

d(−x2)
)

=
1

x

(
− 1

2

∫
eudu

)
=

1

x

(
− 1

2
eu + C

)
=

1

x

(
− 1

2
e−x

2

+ C
)
.

On the other hand, since y = 0 when x = 1, we see that

0 = −1

2
e−1 + C



i.e.

C =
1

2
e−1.

So

y =
1

x

(
− 1

2
e−x

2

+
1

2
e−1
)

=
1

2x

(
− e−x2 + e−1

)
.

8. a) The sample space is{
HHH,HHT,HTH,HTT, THH, THT, TTH, TTT

}
.

b) The event that there are exactly two heads consists of{
HHT,HTH, THH

}
.

c)
3

8
.

d) We have the following table for the probability distribution of x.

x 0 1 2 3
P (x) 1

8
3
8

3
8

1
8

Hence the expected value of x is

µ = 0 · 1

8
+ 1 · 3

8
+ 2 · 3

8
+ 3 · 1

8
=

3

2
.

e) The variance of x is given by

(0− 3

2
)2 · 1

8
+ (1− 3

2
)2 · 3

8
+ (2− 3

2
)2 · 3

8
+ (3− 3

2
)2 · 1

8
=

3

4
.

9. a)

P (x ≤ 1) =

∫ 1

0

3

4
x(2− x)dx =

3

4

∫ 1

0

(2x− x2)dx =
3

4

[
x2 − x3

3

]1
0

=
1

2
.

b)

µ =

∫
xf(x)dx =

∫ 2

0

x · 3

4
x(2− x)dx =

3

4

∫ 2

0

(2x2 − x3)dx = 1 .

c)

V =
(∫

x2f(x)dx
)
− µ2 =

(∫ 2

0

x2 · 3

4
x(2− x)dx

)
− 1 =

1

5
.

d) σ =
√
V =

1√
5

.

10. a) We should have ∫ 1

0

ke−xdx = 1.



But the left hand side is equal to

k

∫ 1

0

e−xdx = k
[
− e−x

]1
0

= k(−e−1 + 1).

So

k =
1

1− e−1
≈ 1.582 .

b)

µ =

∫
xf(x)dx =

∫ 1

0

x(ke−x)dx = k

∫ 1

0

xe−xdx

= k

∫ 1

0

xd(−e−x) = k
(
− xe−x

∣∣∣1
0

+

∫ 1

0

e−xdx
)

= k
(
− e−1 + [−e−x]10

)
= k(−2e−1 + 1)

=
1− 2e−1

1− e−1
≈ 0.418 .

c)

V =

∫
x2f(x)dx− µ2 =

∫ 1

0

x2(ke−x)dx− µ2

= k

∫ 1

0

x2e−xdx− µ2 (integrate by parts twice...)

= k(2− 5e−1)− µ2

≈ 0.079 .

11. a) hyperbolic paraboloid
b) paraboloid
c) none of the above (elliptic cone)
d) ellipsoid
e) hyperboloid of one sheet
f) hyperboloid of two sheets

12. Using step size 1, we have

y(0) = 1

y(1) ≈ y(0) + 1 · y′(0)

= 1 + (y2(0) + 0)

≈ 1 + (12 + 0)

= 2

y(2) ≈ y(1) + 1 · y′(1)



≈ 2 + (y2(1) + 1)

≈ 2 + (22 + 1)

= 7 .

Using step size 1/2, we have

y(0) = 1

y(
1

2
) ≈ y(0) +

1

2
y′(0)

= 1 +
1

2
(y2(0) + 0)

≈ 1 +
1

2
(12 + 0)

=
3

2

y(1) ≈ y(
1

2
) +

1

2
y′(

1

2
)

≈ 3

2
+

1

2
(y2(

1

2
) +

1

2
)

≈ 3

2
+

1

2
((

3

2
)2 +

1

2
)

=
23

8
.

y(
3

2
) ≈ y(1) +

1

2
y′(1)

≈ 23

8
+

1

2
(y2(1) + 1)

≈ 23

8
+

1

2
((

23

8
)2 + 1)

=
961

128
.

y(2) ≈ y(
3

2
) +

1

2
y′(

3

2
)

≈ 961

128
+

1

2
(y2(

3

2
) +

3

2
)

≈ 961

128
+

1

2
((

961

128
)2 +

3

2
)

≈ 36.44 .

13. Let A(t) be the amount of radioactive carbon present after t years. Since the rate of
decrease is proportional to A(t), we have

dA

dt
= −kA

for some positive constant k. Solving this equation by separating the variables we get

A(t) = Ce−kt



for some positive constant C.
Now since the half-life of radioactive carbon is 5715 year, we have

A(5715) =
1

2
A(0)

i.e.

Ce−5715k =
1

2
C.

From this we solve

k =
ln 2

5715
.

Thus the percentage of the present amount that will remain after 1000 years is

A(1000)

A(0)
=
Ce−1000k

C
= e−1000

ln 2
5715 ≈ 0.88 = 88% .


