Math 213 Discussion Worksheet – Week 5

Starred problems are optional

1. Indicate the types (ellipsoid/elliptic cone/elliptic paraboloid/hyperbolic paraboloid/ hyperboloid of one sheet/hyperboloid of two sheets) of the following equations.

(a)
$$x^2 - y^2 - z^2 = 1$$
 (b) $x^2 + y^2 - z^2 = 1$ (c) $x^2 + y^2 - z^2 = 0$ (d) $x - y^2 - z^2 = 0$ (e) $x - y^2 + z^2 = 0$.

Solution. (a) hyperboloid of two sheets (b) hyperboloid of one sheet (c) elliptic cone (d) elliptic paraboloid (e) hyperbolic paraboloid.

2. Describe the traces of $z^2 = x^2 + y^2$ in the given planes.

(a)
$$y = 1$$
 (b) $z = 1$ (c) $x = 0$ (d)* $z - y = 1$ (e)* $z - y = 0$ (f)* $2z - y = 1$.

Solution.

- (a) $z^2 x^2 = 1$ (a hyperbola)
- (b) $x^2 + y^2 = 1$ (a circle)
- (c) $z^2 = y^2$ (i.e. z = y or z = -y, two lines)
- (d) a parabola
- (e) a line
- (f) an ellipse.

3. Sketch a contour map of the surface using level curves for the given c-values.

(a)
$$z = 2 - 2x - y, c = -2, 0, 2, 4$$

(a)
$$z = 2 - 2x - y, c = -2, 0, 2, 4$$

(b) $z = e^{-x^2 - y^2}, c = 1, e^{-1}, e^{-4}$.

Solution.

- (a) 4 parallel lines (picture omitted)
- (b) 3 concentric circles centered at 0 (picture omitted).

4. Let
$$f(x,y) = xye^{-x-y}$$
 and $g(x,y) = \frac{x}{\sqrt{x^2+y^2}}$.

- (a) Find $f_{xx}(x,y)$ and $f_{xy}(x,y)$
- (b) Find $q_x(1,0)$ and $q_y(1,0)$.

Solution.

$$f_{xx}(x,y) = (-2y + xy)e^{-x-y} = (x-2)ye^{-x-y},$$

$$f_{xy}(x,y) = (1-x-y+xy)e^{-x-y} = (1-x)(1-y)e^{-x-y}.$$

(b)
$$g_x(x,y)=\frac{y^2}{(x^2+y^2)^{3/2}} \text{ (after simplification)},$$

$$g_y(x,y)=-\frac{xy}{(x^2+y^2)^{3/2}} \text{ (after simplification)}.$$

Hence $g_x(1,0) = 0$, $g_y(1,0) = 0$.