Math 213 Discussion Worksheet - Week 5

Starred problems are optional

1. Indicate the types (ellipsoid/elliptic cone/elliptic paraboloid/hyperbolic paraboloid/ hyperboloid of one sheet/hyperboloid of two sheets) of the following equations.
(a) $x^{2}-y^{2}-z^{2}=1$ (b) $x^{2}+y^{2}-z^{2}=1$ (c) $x^{2}+y^{2}-z^{2}=0$ (d) $x-y^{2}-z^{2}=0$ (e) $x-y^{2}+z^{2}=0$.

Solution. (a) hyperboloid of two sheets (b) hyperboloid of one sheet (c) elliptic cone (d) elliptic paraboloid (e) hyperbolic paraboloid.
2. Describe the traces of $z^{2}=x^{2}+y^{2}$ in the given planes.
(a) $y=1$ (b) $z=1$ (c) $x=0$ (d)* $z-y=1$ (e) $)^{*} z-y=0$ (f)* $2 z-y=1$.

Solution.

(a) $z^{2}-x^{2}=1$ (a hyperbola)
(b) $x^{2}+y^{2}=1$ (a circle)
(c) $z^{2}=y^{2}$ (i.e. $z=y$ or $z=-y$, two lines)
(d) a parabola
(e) a line
(f) an ellipse.
3. Sketch a contour map of the surface using level curves for the given c-values.
(a) $z=2-2 x-y, c=-2,0,2,4$
(b) $z=e^{-x^{2}-y^{2}}, c=1, e^{-1}, e^{-4}$.

Solution.

(a) 4 parallel lines (picture omitted)
(b) 3 concentric circles centered at 0 (picture omitted).
4. Let $f(x, y)=x y e^{-x-y}$ and $g(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}}}$.
(a) Find $f_{x x}(x, y)$ and $f_{x y}(x, y)$
(b) Find $g_{x}(1,0)$ and $g_{y}(1,0)$.

Solution.

(a)

$$
\begin{aligned}
f_{x x}(x, y)=(-2 y+x y) e^{-x-y} & =(x-2) y e^{-x-y} \\
f_{x y}(x, y)=(1-x-y+x y) e^{-x-y} & =(1-x)(1-y) e^{-x-y} .
\end{aligned}
$$

(b)

$$
\begin{aligned}
g_{x}(x, y) & =\frac{y^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}(\text { after simplification }) \\
g_{y}(x, y) & =-\frac{x y}{\left(x^{2}+y^{2}\right)^{3 / 2}}(\text { after simplification })
\end{aligned}
$$

Hence $g_{x}(1,0)=0, g_{y}(1,0)=0$.

