Math 213 Discussion Worksheet - Week 9

1. Let $F(x, y)=x^{2}-y^{2}-2$. Find the derivative of F in the direction of the vector $\vec{v}=(1,3)$ at the point $(3,2)$.

Solution. The normalized vector of \vec{v} is

$$
\vec{u}=\frac{\vec{v}}{\|\vec{v}\|}=\frac{1}{\sqrt{10}}(1,3)=\left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}\right)
$$

The gradient of F is

$$
\nabla F=\left(F_{x}, F_{y}\right)=(2 x,-2 y)
$$

Evaluating at the given point $(x, y)=(3,2)$ we get

$$
\left.\nabla F\right|_{(3,2)}=(6,-4) .
$$

Hence the derivative of F in \vec{v} direction at $(x, y)=(3,2)$ is

$$
\left.\nabla F\right|_{(3,2)} \cdot \vec{u}=(6,-4) \cdot\left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}\right)=\frac{-6}{\sqrt{10}} .
$$

2. Consider the following set of data points $\{(0,0),(1,1),(2,4),(3,9)\}$. (a) Find the the line of best fit, and compute the corresponding sum of squared errors. (b)* Find the quadratic of best fit, and compute the corresponding sum of squared errors.

Solution. (a) Suppose the linear model is $f(x)=a x+b$, then the sum of squared errors is

$$
S=b^{2}+(a+b-1)^{2}+(2 a+b-4)^{2}+(3 a+b-9)^{2} .
$$

If S is minimized with coefficients a and b, then

$$
\begin{aligned}
& \frac{\partial S}{\partial a}=2(a+b-1)+4(2 a+b-4)+6(3 a+b-9)=28 a+12 b-72=0 \\
& \frac{\partial S}{\partial b}=2 b+2(a+b-1)+2(2 a+b-4)+2(3 a+b-9)=12 a+8 b-28=0
\end{aligned}
$$

i.e.

$$
\begin{aligned}
& 7 a+3 b=18 \\
& 3 a+2 b=7 .
\end{aligned}
$$

Solving this system gives $a=3, b=-1$. The corresponding sum of squared errors is

$$
S(3,-1)=4 \text {. }
$$

(b)* Suppose the linear model is $f(x)=a x^{2}+b x+c$, then the sum of squared errors is

$$
S=c^{2}+(a+b+c-1)^{2}+(4 a+2 b+c-4)^{2}+(9 a+3 b+c-9)^{2} .
$$

If S is minimized with coefficients a, b and c, then

$$
\begin{aligned}
& \frac{\partial S}{\partial a}=2(a+b+c-1)+8(4 a+2 b+c-4)+18(9 a+3 b+c-9)=0 \\
& \frac{\partial S}{\partial b}=2(a+b+c-1)+4(4 a+2 b+c-4)+6(9 a+3 b+c-9)=0 \\
& \frac{\partial S}{\partial c}=2 c+2(a+b+c-1)+2(4 a+2 b+c-4)+2(9 a+3 b+c-9)=0
\end{aligned}
$$

i.e.

$$
\begin{aligned}
& 49 a+18 b+7 c=49 \\
& 18 a+7 b+3 c=18 \\
& 7 a+3 b+2 c=7
\end{aligned}
$$

Solving this system gives $a=1, b=0, c=0$. The corresponding sum of squared errors is

$$
S(1,0,0)=0 .
$$

