1. (10 pts) Let

$$
\overrightarrow{\mathbf{a}}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right), \overrightarrow{\mathbf{b}}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \overrightarrow{\mathbf{c}}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) .
$$

Compute the triple product $\overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})$.
2. (10 pts) Let $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ be as above. Use dot product to find the angle between $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}} \cdot\left(\right.$ Hint: $\cos \left(60^{\circ}\right)=1 / 2$.)

Bonus. (5 pts) Let $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ be two vectors (not necessarily the same as above). Use dot product to prove the parallelogram law:

$$
\|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}\|^{2}+\|\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}\|^{2}=2\left(\|\overrightarrow{\mathbf{a}}\|^{2}+\|\overrightarrow{\mathbf{b}}\|^{2}\right)
$$

