Section: 328
Solve one of the following two problems. Problem 2 on the back.

1. Let S be the boundary of the region

$$
R=\left\{(x, y, z): \sqrt{x^{2}+y^{2}} \leq z \leq 1\right\} .
$$

Compute the flux integral

$$
\iint_{S} \vec{v} \cdot \vec{N} d A
$$

where $\vec{v}=x^{2} \vec{\imath}+y^{2} \vec{\jmath}+z \vec{k}$ and \vec{N} is the outward normal.
2. Consider the surface patch

$$
S=\left\{(x, y, z): z=x^{2}+y^{2}, x^{2}+y^{2} \leq 1\right\} .
$$

Evaluate the flux integral

$$
\iint_{S}(\operatorname{curl} \vec{F}) \cdot \vec{N} d A
$$

where $\vec{F}=-y \vec{\imath}+x \vec{\jmath}+z^{2} \vec{k}$ and \vec{N} is the upward normal.

