1. (10 pts) Consider the curve given by

$$
\overrightarrow{\mathbf{x}}(t)=\left(\begin{array}{c}
t \\
t^{2} \\
t^{3}
\end{array}\right) .
$$

(a) Compute the velocity, acceleration and jerk (third derivative) vectors. (b) Find the volume of the parallelepiped spanned by these three vectors.
2. (10 pts) Consider the curve given by

$$
\overrightarrow{\mathbf{x}}(\theta)=\left(\begin{array}{c}
\cos \theta+\sin \theta \\
\cos \theta-\sin \theta \\
\theta
\end{array}\right)
$$

Compute the length of the segment with $0 \leq \theta \leq 2 \pi$.

Bonus. (5 pts) Consider the curve given in Problem 1. (a) Compute the curvature at $t=0$. (b) Find the limit of the curvature as $t \rightarrow \infty$.

