Name:

Math 234 Quiz 3

Sep 23, 2014

Section: 328 □

329 □

1. (10 pts) (a) Find the equation of the plane that contains the points (1,0,0), (0,1,0) and (1,1,-1). (b) Find the intersection of the plane with the z-axis.

-1). (b) Find the intersection of the plane with the z-axis.

(a) Suppose
$$Z = ax + by + C$$
, So, $Z = -x - y + 1$

then
$$\begin{cases}
0 = a & +c & (1) \\
0 = b + c & (2) & (b) \text{ Set } x = 0 \text{ and } y = 0, \\
-1 = a + b + c & (3) & get $Z = -b - b + c = 0, \\
(2) - (1) \Rightarrow b - c = 0 \Rightarrow b = c & = 1
\end{cases}$

$$(3) - (2) \Rightarrow a = -1$$

$$(3) - (3) \Rightarrow b = -1$$

$$(3) - (3) \Rightarrow b = -1$$

$$(3) - (3) \Rightarrow b = -1$$$$

2. (10 pts) Classify the quadratic form

$$Q(x,y) = -2x^2 + 4xy - 6y^2$$

as definite, indefinite, or semidefinite.

$$\Delta = 4AC - B^2 = 4(-2)(-6) - 4^2$$
= 48 - 16
= 32 > 0

So $Q(x,y)$ is (negative) definite.

Bonus. (5 pts) Let Q(x,y) be as above. Rewrite Q(x,y) in terms of polar coordinates (i.e. r and θ), and simplify the expression as much as possible.

$$Q(x,y) = Q(r\omega s_0, r \sin \theta)$$
= $-2(r\omega s_0)^2 + 4(r\omega s_0)(r \sin \theta) - 6(r \sin \theta)^2$
= $-2r^2(\omega s_0^2 \theta - 2\omega s_0 \theta \sin \theta + 3\sin^2 \theta)$
= $-2r^2(\omega s_0^2 \theta - 2\omega s_0 \theta \sin \theta + \sin^2 \theta + 2\sin^2 \theta)$
= $-2r^2(1 - 2\omega s_0 \theta \sin \theta + 2\sin^2 \theta)$
= $-2r^2(2r^2(2r - 2\sin^2 \theta) - \cos^2 \theta)$

 $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$