1. (10 pts) Compute $\int_{\mathcal{C}} y^{2} d s$ where \mathcal{C} is the curve $y=e^{x}, 0 \leq x \leq 1$.
2. (10 pts) Compute $\oint_{\mathcal{C}} x^{2} d x+y^{2} d y$ where \mathcal{C} is the unit circle oriented counter-clockwise. Bonus. (5 pts) Compute $\oint_{\mathcal{C}} y^{2} d x+x^{2} d y$ where \mathcal{C} is as in Problem 2.

Name:
Section:
329

1. (10 pts) Compute $\int_{\mathcal{C}} y d s$ where \mathcal{C} is the curve $y=x^{3}, 0 \leq x \leq 1$.
2. Suppose a wire \mathcal{C} is the quarter of the unit circle in the first quadrant, and is of constant density 1. (1) (10 pts) Find the center of mass of the wire. (2) (5 pts , bonus) what if the density is y^{2} ?
