Math 234 Review

Chapter 2: Parametric curves and vector functions

1. Consider the helix given by

$$
\overrightarrow{\mathbf{x}}(t)=\left(\begin{array}{c}
R \cos (\omega t) \\
R \sin (\omega t) \\
a t
\end{array}\right) .
$$

(1) Compute $\overrightarrow{\mathbf{x}}^{\prime}(t), \overrightarrow{\mathbf{x}}^{\prime \prime}(t)$ and $\overrightarrow{\mathbf{x}}^{\prime \prime \prime}(t)$.
(2) Compute $\left\|\overrightarrow{\mathbf{x}}^{\prime}(t)\right\|$.
(3) Find the length of the segment with $0 \leq t \leq \pi$.
(4) Find the angle between $\overrightarrow{\mathbf{x}}^{\prime}(t)$ and $\overrightarrow{\mathbf{x}}^{\prime \prime}(t)$.
(5) Compute the triple product $\overrightarrow{\mathbf{x}}^{\prime}(t) \cdot\left(\overrightarrow{\mathbf{x}}^{\prime \prime}(t) \times \overrightarrow{\mathbf{x}}^{\prime \prime \prime}(t)\right)$.
(6) Find the unit tangent vector $\overrightarrow{\mathbf{T}}(t)$.
(7) Find the curvature vector $\vec{\kappa}(t)$ and curvature $\kappa(t)$.
(8) Find the normal vector $\overrightarrow{\mathbf{N}}(t)$.
(9) Find the binormal vector $\overrightarrow{\mathbf{B}}(t)$.
(10) Find the equation of the tangent line to the curve at time t.
(11) Find the intersection of the tangent line with the $x y$-plane.
2. Consider the curve given by

$$
\overrightarrow{\mathbf{x}}(t)=\binom{t}{t^{3}} .
$$

(1) Find the curvature of the curve at $t=0$.
(2) Find the limit of the curvature as $t \rightarrow \infty$.

Chapter 3: Functions of more than one variable

1. Sketch the graph and level curves of the following functions.
(1) $f(x, y)=x^{2}+y^{2}$
(2) $f(x, y)=x y$
(3) $f(x, y)=x^{2}$
2. (a) Find the equation of the plane that contains $(1,0,0),(0,1,0)$ and $(1,1,1)$. (b) Find the intersection of the plane with the y-axis. (c) Find a normal vector to the plane.
3. (a) Find the equation of the plane that contains the point $(1,1,1)$ and is normal to the vector $(1,1,1)$. (b) Find the intersection of the plane with the $x y$-plane.
4. (a) Classify the following quadratic forms as definite, indefinite, or semidefinite. (b) Determine their zero sets.
(1) $2 x^{2}+4 x y+4 y^{2}$
(2) $3 x^{2}+6 x y$
(3) $4 x^{2}-8 x y+4 y^{2}$
5. (a) Write the function $f(x, y)=\frac{y}{\sqrt{x^{2}+y^{2}}}$ in terms of polar coordinates. (b) Write the function $f(r, \theta)=r \tan \theta$ in terms of $x y$-coordinates. (c) Sketch the graph of the function $f(x, y)=\frac{1}{x^{2}+y^{2}}$.

Chapter 4: Derivatives

1. Find the partial derivatives f_{x} and f_{y} of the following functions.
(1) $f(x, y)=(x-y)^{3}$
(2) $f(x, y)=e^{-x^{2}-y^{2}}$
(3) $f(x, y)=\ln \sqrt{x^{2}+y^{2}}$
(4) $f(x, y)=\frac{x}{x^{2}+y^{2}}$
(5) $f(x, y)=e^{x y} \cos (x y)$
(6) $f(x, y)=\arctan \left(\frac{y}{x}\right)$
2. Let $f(x, y)=x^{2} y+x y^{2}$.
(1) Find an equation for the plane tangent to the graph of $f(x, y)$ at $(1,2,6)$.
(2) Find the linear approximation to $f(x, y)$ at the point $(1,2)$.
(3) Find a normal vector to the level curve of $f(x, y)$ at $(1,2)$.
(4) Find an equation for the tangent line to the level curve of $f(x, y)$ at $(1,2)$.
(5) Find a direction in which $f(x, y)$ does not change at $(1,2)$.
3. (a) Find an equation for the plane tangent to the surface defined by $x^{2}-2 y^{2}+3 z^{2}=2$ at $(1,-1,1)$. (b) Find an equation for the normal line to the surface at $(1,-1,1)$.
4. Suppose $y=f(x)$ satisfies the equation $x^{2}-y^{2}+y^{3}=0$. Use implicit differentiation to find the derivative of $f(x)$ at $(0,1)$ and $(\sqrt{2},-1)$ respectively.
5. Suppose $z=f(x, y)$ satisfies the equation $x^{2}+y^{2}-z^{2}+z^{3}=0$. Use implicit differentiation to find the partial derivatives of $f(x, y)$ at $(1,1,-1)$.
6. Find the second derivatives of the following functions.
(1) $f(x, y)=e^{x} \cos y$
(2) $f(x, y)=\ln \left(x^{2}+y^{2}\right)$
(3) $f(x, y)=\arctan \left(\frac{y}{x}\right)$
(4) $f(x, y)=\frac{y}{x^{2}+y^{2}}$
(5) $f(x, y, z)=x^{2}+y^{2}+z^{2}$
7. Find a function $f(x, y)$ (when exists) that satisfies the given equations.
(1) $f_{x}=x^{2} y, f_{y}=x y^{2}$
(2) $f_{x}=x y^{2}, f_{y}=x^{2} y$
(3) $f_{x}=y e^{x y}, f_{y}=x e^{x y}$
