Math 234 Review - Answers and Solutions

Chapter 2: Parametric curves and vector functions

1. (1)

$$
\begin{array}{r}
\overrightarrow{\mathbf{x}}^{\prime}(t)=\left(\begin{array}{c}
-\omega R \sin (\omega t) \\
\omega R \cos (\omega t) \\
a
\end{array}\right) \\
\overrightarrow{\mathbf{x}}^{\prime \prime}(t)=\left(\begin{array}{c}
-\omega^{2} R \cos (\omega t) \\
-\omega^{2} R \sin (\omega t) \\
0
\end{array}\right) \\
\overrightarrow{\mathbf{x}}^{\prime \prime \prime}(t)=\left(\begin{array}{c}
\omega^{3} R \sin (\omega t) \\
-\omega^{3} R \cos (\omega t) \\
0
\end{array}\right)
\end{array}
$$

(2) $\left\|\overrightarrow{\mathbf{x}}^{\prime}(t)\right\|=\sqrt{\omega^{2} R^{2}+a^{2}}$
(3) $\int_{0}^{\pi}\left\|\overrightarrow{\mathbf{x}}^{\prime}(t)\right\| d t=\pi \sqrt{\omega^{2} R^{2}+a^{2}}$
(4)* Since $\overrightarrow{\mathbf{x}}^{\prime}(t) \cdot \overrightarrow{\mathbf{x}}^{\prime \prime}(t)=0$, the angle between them is $\frac{\pi}{2}$ or 90°.
$(5)^{*} \overrightarrow{\mathbf{x}}^{\prime}(t) \cdot\left(\overrightarrow{\mathbf{x}}^{\prime \prime}(t) \times \overrightarrow{\mathbf{x}}^{\prime \prime \prime}(t)\right)=a \omega^{5} R^{2}$
(6)

$$
\overrightarrow{\mathbf{T}}(t)=\frac{\overrightarrow{\mathbf{x}}^{\prime}(t)}{\left\|\overrightarrow{\mathbf{x}}^{\prime}(t)\right\|}=\frac{1}{\sqrt{\omega^{2} R^{2}+a^{2}}}\left(\begin{array}{c}
-\omega R \sin (\omega t) \\
\omega R \cos (\omega t) \\
a
\end{array}\right)
$$

(7)

$$
\begin{gathered}
\vec{\kappa}(t)=\frac{1}{\left\|\overrightarrow{\mathbf{x}}^{\prime}(t)\right\|} \frac{d}{d t} \overrightarrow{\mathbf{T}}(t)=\frac{1}{\omega^{2} R^{2}+a^{2}}\left(\begin{array}{c}
-\omega^{2} R \cos (\omega t) \\
-\omega^{2} R \sin (\omega t) \\
0
\end{array}\right) \\
\kappa(t)=\|\vec{\kappa}(t)\|=\frac{\omega^{2} R}{\omega^{2} R^{2}+a^{2}}
\end{gathered}
$$

2.*

$$
\begin{gathered}
\overrightarrow{\mathbf{x}}^{\prime}(t)=\binom{1}{3 t^{2}} \\
\left\|\overrightarrow{\mathbf{x}}^{\prime}(t)\right\|=\sqrt{1+9 t^{4}} \\
\overrightarrow{\mathrm{~T}}(t)=\frac{1}{\sqrt{1+9 t^{4}}}\binom{1}{3 t^{2}}
\end{gathered}
$$

$$
\begin{gathered}
\vec{\kappa}(t)=\frac{1}{\left\|\overrightarrow{\mathbf{x}}^{\prime}(t)\right\|} \frac{d}{d t} \overrightarrow{\mathbf{T}}(t)=\frac{6 t}{\left(1+9 t^{4}\right)^{2}}\binom{3 t^{2}}{1} \\
\kappa(t)=\|\vec{\kappa}(t)\|=\frac{6|t|}{\left(1+9 t^{4}\right)^{2}} \sqrt{1+9 t^{4}}=\frac{6|t|}{\left(1+9 t^{4}\right)^{3 / 2}} \\
\kappa(0)=0 \\
\lim _{t \rightarrow \infty} \kappa(t)=0
\end{gathered}
$$

Chapter 3: Functions of more than one variable

2.* (a) $x+y-z=1$ or $z=x+y-1$
(b) 1
(c) $(1,1,-1)$
3. (a) $x+y+z=3$ or $z=-x-y+3$
(b)* $x+y=3$ or $y=-x+3$
4. * (1) definite
(2) indefinite
(3) semidefinite
5.* (a) $f(r, \theta)=\sin \theta$
(b) $f(x, y)=\frac{y}{x} \sqrt{x^{2}+y^{2}}$

Chapter 4: Derivatives

1. Find the partial derivatives f_{x} and f_{y} of the following functions.
(1)

$$
\begin{gathered}
f_{x}(x, y)=3(x-y)^{2} \\
f_{y}(x, y)=-3(x-y)^{2}
\end{gathered}
$$

$$
\begin{align*}
& f_{x}(x, y)=-2 x e^{-x^{2}-y^{2}} \tag{2}\\
& f_{y}(x, y)=-2 y e^{-x^{2}-y^{2}}
\end{align*}
$$

$$
\begin{align*}
f_{x}(x, y) & =\frac{x}{x^{2}+y^{2}} \tag{3}\\
f_{y}(x, y) & =\frac{y}{x^{2}+y^{2}}
\end{align*}
$$

(4)

$$
\begin{aligned}
& f_{x}(x, y)=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& f_{y}(x, y)=\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

(5)

$$
\begin{aligned}
& f_{x}(x, y)=y e^{x y}(\cos (x y)-\sin (x y)) \\
& f_{y}(x, y)=x e^{x y}(\cos (x y)-\sin (x y))
\end{aligned}
$$

(6)

$$
\begin{aligned}
f_{x}(x, y) & =\frac{-y}{x^{2}+y^{2}} \\
f_{y}(x, y) & =\frac{x}{x^{2}+y^{2}}
\end{aligned}
$$

2. (2) Note that

$$
\vec{\nabla} f(x, y)=\left(2 x y+y^{2}, x^{2}+2 x y\right)
$$

At the point $(1,2)$ we have

$$
\vec{\nabla} f(1,2)=(8,5)
$$

Therefore, when (x, y) is near the point $(1,2)$,

$$
f(x, y) \approx f(1,2)+\vec{\nabla} f(1,2) \cdot\left(\vec{x}-\overrightarrow{x_{0}}\right)
$$

that is,

$$
f(x, y) \approx 6+8(x-1)+5(y-2) .
$$

(1)* From the linear approximation, the tangent plane is given by the equation

$$
z=6+8(x-1)+5(y-2) \text {. }
$$

(3) Since the gradient of f is always normal to the level curve of f, one can take the vector to be

$$
\vec{\nabla} f(1,2)=(8,5) .
$$

(4) The tangent line to the level curve of $f(x, y)$ at $(1,2)$ can be given by the level curve of the tangent plane to the graph of f at $(1,2,6)$ (the last component is $f(1,2)=6$), that is

$$
z=6+8(x-1)+5(y-2)=6 .
$$

Simplifying this gives

$$
8(x-1)+5(y-2)=0 \text {. }
$$

(5) One needs to find a vector (a, b) which is normal to the gradient of f at $(1,2)$, i.e.

$$
(a, b) \cdot \vec{\nabla} f(1,2)=0
$$

or, in other words,

$$
8 a+5 b=0 .
$$

One can choose, for example, $(a, b)=(-5,8)$.
3. (a) Let

$$
f(x, y, z)=x^{2}-2 y^{2}+3 z^{2} .
$$

Then the surface is the level surface of $f(x, y, z)$ at $(1,-1,1)$ (corresponding to level $f=2$). Since $\vec{\nabla} f(1,-1,1)$ is normal to this level surface at $(1,-1,1)$, it is also normal to the tangent
plane to the level surface at $(1,-1,1)$. On the other hand, the tangent plane contains the point $\overrightarrow{x_{0}}=(1,-1,1)$, so it is given by the equation

$$
\vec{\nabla} f(1,-1,1) \cdot\left(\vec{x}-\overrightarrow{x_{0}}\right)=0 .
$$

Now compute

$$
\begin{gathered}
\vec{\nabla} f(x, y, z)=(2 x,-4 y, 6 z), \\
\vec{\nabla} f(1,-1,1)=(2,4,6) .
\end{gathered}
$$

Therefore the equation is

$$
2(x-1)+4(y+1)+6(z-1)=0 \text {. }
$$

4.* Plug in $y=f(x)$ to the equation and differentiate both sides in x. By the (one-variable) chain rule, one gets

$$
2 x-2 f(x) f^{\prime}(x)+3 f(x)^{2} f^{\prime}(x)=0
$$

At the point $(x, y)=(0,1)$, one has $f(0)=y=1$, and so

$$
-2 f^{\prime}(0)+3 f^{\prime}(0)=0
$$

i.e.

$$
f^{\prime}(0)=0 \text {. }
$$

At the point $(x, y)=(\sqrt{2},-1)$, one gets

$$
2 \sqrt{2}+2 f^{\prime}(\sqrt{2})+3 f^{\prime}(\sqrt{2})=0
$$

So

$$
f^{\prime}(\sqrt{2})=\frac{-2 \sqrt{2}}{5} \text {. }
$$

6. (1)

$$
\begin{gathered}
f_{x x}(x, y)=e^{x} \cos y \\
f_{x y}(x, y)=-e^{x} \sin y \\
f_{y y}(x, y)=-e^{x} \cos y
\end{gathered}
$$

$$
\begin{align*}
& f_{x x}(x, y)=\frac{2\left(y^{2}-x^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \tag{2}\\
& f_{x y}(x, y)=\frac{-4 x y}{\left(x^{2}+y^{2}\right)^{2}} \\
& f_{y y}(x, y)=\frac{2\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}
\end{align*}
$$

$$
\begin{equation*}
f_{x x}(x, y)=\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}} \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& f_{x y}(x, y)=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& f_{y y}(x, y)=\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

(4)*

$$
\begin{aligned}
& f_{x x}(x, y)=\frac{2 y\left(3 x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}} \\
& f_{x y}(x, y)=\frac{2 x\left(x^{2}-3 y^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}} \\
& f_{y y}(x, y)=\frac{2 y\left(y^{2}-3 x^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}}
\end{aligned}
$$

7. (1) Does not exist.
(2)

$$
f(x)=\frac{1}{2} x^{2} y^{2}+C
$$

(3)

$$
f(x)=e^{x y}+C
$$

