Math 234 Review

Chapter 5: Maxima and Minima

1. Find all critical points of the following functions. Apply the second derivative test to the critical points you find.
(a) $2 x^{2}+6 x y+5 y^{2}+6 x+10 y+5$
(b) $x^{2}+3 x y+2 y^{2}-x-2$
(c) $3 x^{2}+2 x^{3}+2 y^{2}+y^{4}$
(d) $x y(3 x+3 y+1)$
(e) $x^{4}+y^{4}-4 x y$
2. Find all critical points of the function

$$
f(x, y, z)=x^{2}+(x-y)^{2}+(y-z)^{2}+(z-1)^{2} .
$$

3. Find the volume of the largest rectangular box with edges parallel to the axes that can be inscribed in the the surface

$$
x^{4}+y^{4}+z^{4}=1 .
$$

4. Find all points on the surface

$$
x^{2}+4 y^{2}+9 z^{2}=36
$$

that are closest to the origin.
5.* A thin cylindrical drinking cup has a disk-shaped base and is of constant density 1 per unit area. The cup has total mass fixed to be S. Find the largest possible capacity of the cup.

Chapter 6: Integrals

1. Compute the following double integrals.
(a) $\iint_{D} \sin \left(x^{2}\right) d A$, where $D=\{(x, y): 0 \leq y \leq 1, y \leq x \leq 1\}$
(b) $\iint_{D} \frac{y}{1+x^{2}} d A$, where $D=\left\{(x, y): 0 \leq y \leq 1, y^{2} \leq x \leq 1\right\}$
(c) $\iint_{D} x e^{y} d A$, where $D=\{(x, y): 0 \leq y \leq 1, \sqrt{y} \leq x \leq y\}$
(d) $\iint_{D} \sqrt{4-x^{2}-y^{2}} d A$, where $D=\left\{(x, y): x^{2}+y^{2} \leq 2\right\}$
2. Find the volume of the following regions by computing a double integral.
(a) the region in the first octant bounded by $y^{2}=4-x, y^{2}=x$ and $z=y$.
(b) the region in the first octant bounded by $z^{2}=x^{2}+y^{2}$ and $z=x^{2}+y^{2}$.
3. Check out the last homework assignment for triple integrals.
