
Math 234 Review

Chapter 5: Maxima and Minima

1. (a) Solving

fx = 4x+ 6y + 6 = 0

fy = 6x+ 10y + 10 = 0

gives a unique critical point

(x, y) = (0,−1)

The second derivative matrix at (0,−1) is

H =

[
fxx(0,−1) fxy(0,−1)
fyx(0,−1) fyy(0,−1)

]
=

[
4 6
6 10

]
Since det(H) = 40 − 36 > 0 and fxx > 0, by the second derivative test (0,−1) is a local
minimum point.

1. (b) Solving

fx = 2x+ 3y − 1 = 0

fy = 3x+ 4y = 0

gives a unique critical point

(x, y) = (−4, 3)

The second derivative matrix at (−4, 3) is

H =

[
fxx(−4, 3) fxy(−4, 3)
fyx(−4, 3) fyy(−4, 3)

]
=

[
2 3
3 4

]
Since det(H) = 8− 9 < 0, by the second derivative test (−4, 3) is a saddle point.

1. (c) Solving

fx = 6x+ 6x2 = 6x(1 + x) = 0

fy = 4y + 4y3 = 4y(1 + y2) = 0

gives x = 0,−1 and y = 0. So there are 2 critical points:

(0, 0) and (−1, 0)

At (0, 0), the second derivative matrix is[
6 + 12x 0

0 4 + 12y2

]
x=0
y=0

=

[
6 0
0 4

]



Since det(H) = 24 > 0 and fxx > 0, by the second derivative test (0, 0) is a local minimum
point.

At (−1, 0), the second derivative matrix is[
6 + 12x 0

0 4 + 12y2

]
x=−1
y=0

=

[
−6 0
0 4

]
Since det(H) = −24 < 0, by the second derivative test (−1, 0) is a saddle point.

1. (d) Note that
f(x, y) = 3x2y + 3xy2 + xy

Now set

fx = 6xy + 3y2 + y = y(6x+ 3y + 1) = 0

fy = 3x2 + 6xy + x = x(3x+ 6y + 1) = 0

If x 6= 0 and y 6= 0, we get

6x+ 3y + 1 = 0

3x+ 6y + 1 = 0

Solving this gives a critical point

(x, y) = (−1

9
,−1

9
)

If x 6= 0 and y = 0, we get

y = 0

3x+ 6y + 1 = 0

Solving this gives a critical point

(x, y) = (−1

3
, 0)

If x = 0 and y 6= 0, we get

6x+ 3y + 1 = 0

x = 0

Solving this gives a critical point

(x, y) = (0,−1

3
)



Finally, if x = 0 and y = 0, then the equations are satisfied and we get the last critical
point

(x, y) = (0, 0)

At (−1/9,−1/9), the second derivative matrix is[
6y 6x+ 6y + 1

6x+ 6y + 1 6x

]
x=−1/9
y=−1/9

=

[
−2/3 −1/3
−1/3 −2/3

]
Since det(H) = 1/3 > 0 and fxx < 0, by the second derivative test (−1/9,−1/9) is a local
maximum point.

At (−1/3, 0), the second derivative matrix is[
6y 6x+ 6y + 1

6x+ 6y + 1 6x

]
x=−1/3

y=0

=

[
0 −1
−1 −2

]
Since det(H) = −1 < 0, by the second derivative test (−1/3, 0) is a saddle point. Similarly,
(0,−1/3) is a saddle point.

At (0, 0), the second derivative matrix is[
6y 6x+ 6y + 1

6x+ 6y + 1 6x

]
x=0
y=0

=

[
0 1
1 0

]
Since det(H) = −1 < 0, by the second derivative test (0, 0) is an saddle point.

1. (e) Solving

fx = 4x3 − 4y = 0

fy = 4y3 − 4x = 0

gives x9− x = x(x8− 1) = 0. Therefore x = 0,±1 and y = x3. So there are 3 critical points:

(0, 0) , (1, 1) and (−1,−1)

At (0, 0), the second derivative matrix is[
12x2 −4
−4 12y2

]
x=0
y=0

=

[
0 −4
−4 0

]
Since det(H) = −16 < 0, by the second derivative test (0, 0) is a saddle point.

At (1, 1), the second derivative matrix is[
12x2 −4
−4 12y2

]
x=0
y=0

=

[
12 −4
−4 12

]



Since det(H) > 0 and fxx > 0, by the second derivative test (1, 1) is a local minimum
point. Similarly, (−1,−1) is a local minimum point.

2. To find the critical points, compute and set the partial derivatives equal to 0.

fx = 2x+ 2(x− y) = 4x− 2y = 0 (1)

fy = −2(x− y) + 2(y − z) = −2x+ 4y − 2z = 0 (2)

fz = −2(y − z) + 2(z − 1) = −2y + 4z − 2 = 0 (3)

From (1), we get
y = 2x

Plug this into (2), we get
z = 3x

Plug these two into (3), we get
8x = 2

Therefore x = 1/4, and so

(x, y, z) =
(1

4
,
2

4
,
3

4

)
is the unique critical point.

3. Suppose the vertex of the rectangular box in the first octant is (x, y, z). Then the volume
of the box is given by (2x)(2y)(2z) = 8xyz, where (x, y, z) is restricted to the given surface.
So we need to maximize

f = 8xyz

subject to the constraint
g = x4 + y4 + z4 − 1 = 0

Using the method of Lagrange multiplier, we need to solve

fx = λgx

fy = λgy

fz = λgz

g = 0

i.e.

8yz = λ4x3 (4)

8xz = λ4y3 (5)

8xy = λ4z3 (6)

x4 + y4 + z4 = 1 (7)



Multiply (4) by x, (5) by y, (6) by z, we get

8xyz = λ4x4

8xyz = λ4y4

8xyz = λ4z4

Since the left hand sides are all equal, we get

λ4x4 = λ4y4 = λ4z4

Note that λ 6= 0, since otherwise by (4) we get yz = 0, contradicting the fact that the
maximum volume (supposedly exists) 8xyz should be positive. Now we can cancel out λ4
and get

x4 = y4 = z4

Since x, y, z are all positive, this implies

x = y = z

Finally, plug this into (7), we get
3x4 = 1

i.e.

x =
1
4
√

3

So to maximize the volume, we need

x = y = z =
1
4
√

3

and the maximum volume is
8

33/4

4. Let (x, y, z) be a point on the surface, then its distance to the origin is√
x2 + y2 + z2

So we need to minimize
√
x2 + y2 + z2 subject to the constraint

g = x2 + 4y2 + 9z2 − 36 = 0

For convenience we may instead minimize the squared distance

f = x2 + y2 + z2

By the method of Lagrange multiplier, we need to solve

2x = λ2x (8)

2y = λ8y (9)

2z = λ18z (10)

x2 + 4y2 + 9z2 = 36 (11)



If x 6= 0, then one can cancel out 2x in (8) and get λ = 1. But then (9) and (10) imply
y = 0 and z = 0. And (11) in turn implies x2 = 36, that is, x = ±6. So in this case we get
two critical points: (±6, 0, 0).

If x = 0 and y 6= 0, then one can cancel out 2y in (8) and get λ = 1/4. But then (10)
implies z = 0, and (11) in turn implies 4y2 = 36, that is, y = ±3. So in this case we also get
two critical points: (0,±3, 0).

Finally, if x = 0 and y = 0, then (11) implies 9z2 = 36, that is, z = ±2. So we get two
more critical points: (0, 0,±2).

Now by testing all the 6 critical points we see that f(0, 0, 2) = f(0, 0,−2) = 4 has the

smallest value. So (0, 0,±2) are the closest points to the origin. And the closest distance

is 2 .

5.∗ It seems tricky to solve this problem using the method of Lagrange multiplier. Here we
give a solution by reducing it to a one-variable optimization problem.

Suppose the cup has height h and the base has radius r. Then the area of the base is
πr2, and the area of the side is 2πrh. Since the density is 1 per unit area, the total mass is

πr2 + 2πrh = S (12)

The capacity (i.e. volume) we need to maximize is

f = πr2h = r · πrh (13)

From (12) we get

πrh =
S − πr2

2
Plug this into (13) we get

f(r) =
1

2
(Sr − πr3)

where r > 0 and πr2 < S. So we only need to maximize the one-variable function f(r) in
its domain.

Now differentiate and set

f ′(r) =
1

2
(S − 3πr2) = 0

Since r is positive we get

r =

√
S

3π

By the first derivative test this is the global maximum of f(r) on the positive real line. So
the maximum volume is

1

2

√
S

3π
(S − π S

3π
) =

1

3
√

3π
S3/2



Chapter 6: Integrals

1. (a) One can rewrite the domain D as

D = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x}

Therefore ∫∫
D

sin(x2)dA =

∫ 1

0

∫ x

0

sin(x2)dydx

=

∫ 1

0

x sin(x2)dx

=
1

2

∫ 1

0

sin(u)du (u = x2)

=
1

2

[
− cos(u)

]1
0

=
1− cos(1)

2

1. (b) One can rewrite the domain D as

D = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤
√
x}

Therefore ∫∫
D

y

1 + x2
dA =

∫ 1

0

∫ √x
0

y

1 + x2
dydx

=

∫ 1

0

1

1 + x2

(∫ √x
0

ydy
)
dx

=
1

2

∫ 1

0

x

1 + x2
dx

=
1

4

∫ 2

1

1

u
du (u = x2 + 1)

=
1

4

[
lnu
]2
1

=
ln 2

4



1. (c) Using the given order, we have∫∫
D

xeydA =

∫ 1

0

∫ y

√
y

xeydxdy

=
1

2

∫ 1

0

ey(y2 − y)dy

=
1

2

∫ 1

0

y2eydy − 1

2

∫ 1

0

yeydy

=
1

2

∫ 1

0

y2dey − 1

2

∫ 1

0

yeydy

=
1

2

(
y2ey

∣∣∣1
0
− 2

∫ 1

0

yeydy
)
− 1

2

∫ 1

0

yeydy (integrate by parts)

=
e

2
− 3

2

∫ 1

0

yeydy

=
e

2
− 3

2

(
yey
∣∣∣1
0
−
∫ 1

0

eydy
)

(integrate by parts)

=
e

2
− 3

2

(
e− (e− 1)

)
=

e

2
− 3

2

1. (d) Using the polar coordinates, we can write the domain D as

D = {(x, y) : 0 ≤ θ ≤ 2π, 0 ≤ r ≤
√

2}

Therefore ∫∫
D

√
4− x2 − y2dA =

∫ 2π

0

(∫ √2
0

√
4− r2 rdr

)
dθ

=

∫ 2π

0

(
− 1

2

∫ 2

4

√
udu

)
dθ (u = 4− r2)

=

∫ 2π

0

(
− 1

2

[2

3
u3/2

]2
4

)
dθ

=

∫ 2π

0

1

3

(
43/2 − 23/2

)
dθ

=
4π

3

(
4−
√

2
)

2. (a) This is the region under the graph z = y over the domain D, where D is bounded by
y2 = 4− x, y2 = x in the first quadrant. Alternatively,

D = {(x, y) : 0 ≤ y ≤
√

2, y2 ≤ x ≤ 4− y2}



Therefore the volume equals ∫∫
D

ydA =

∫ √2
0

∫ 4−y2

y2
ydxdy

=

∫ √2
0

y(4− y2 − y2)dy

=

∫ √2
0

(4y − 2y3)dy

=
[
2y2 − y4

2

]√2
0

= 4− 2

= 2

2. (b) This is the region between the graphs z =
√
x2 + y2 and z = x2 + y2 over the domain

D, where D is bounded by the intersection of the two graphs, and is restricted to the first
quadrant. More precisely,

D = {(x, y) : x2 + y2 ≤ 1, x ≥ 0, y ≥ 0}

Therefore, using the polar coordinates, the volume equals∫∫
D

√
x2 + y2 − (x2 + y2)dA =

∫ π/2

0

∫ 1

0

(r − r2)rdrdθ

=

∫ π/2

0

∫ 1

0

(r2 − r3)drdθ

=

∫ π/2

0

(1

3
− 1

4

)
dθ

=
π

24


