Math 234 Review

Chapter 5: Maxima and Minima

1. (a) Solving

$$
\begin{aligned}
& f_{x}=4 x+6 y+6=0 \\
& f_{y}=6 x+10 y+10=0
\end{aligned}
$$

gives a unique critical point

$$
(x, y)=(0,-1)
$$

The second derivative matrix at $(0,-1)$ is

$$
H=\left[\begin{array}{ll}
f_{x x}(0,-1) & f_{x y}(0,-1) \\
f_{y x}(0,-1) & f_{y y}(0,-1)
\end{array}\right]=\left[\begin{array}{cc}
4 & 6 \\
6 & 10
\end{array}\right]
$$

Since $\operatorname{det}(H)=40-36>0$ and $f_{x x}>0$, by the second derivative test $(0,-1)$ is a local minimum point.

1. (b) Solving

$$
\begin{aligned}
& f_{x}=2 x+3 y-1=0 \\
& f_{y}=3 x+4 y=0
\end{aligned}
$$

gives a unique critical point

$$
(x, y)=(-4,3)
$$

The second derivative matrix at $(-4,3)$ is

$$
H=\left[\begin{array}{ll}
f_{x x}(-4,3) & f_{x y}(-4,3) \\
f_{y x}(-4,3) & f_{y y}(-4,3)
\end{array}\right]=\left[\begin{array}{ll}
2 & 3 \\
3 & 4
\end{array}\right]
$$

Since $\operatorname{det}(H)=8-9<0$, by the second derivative test $(-4,3)$ is a saddle point.

1. (c) Solving

$$
\begin{aligned}
& f_{x}=6 x+6 x^{2}=6 x(1+x)=0 \\
& f_{y}=4 y+4 y^{3}=4 y\left(1+y^{2}\right)=0
\end{aligned}
$$

gives $x=0,-1$ and $y=0$. So there are 2 critical points:

$$
(0,0) \text { and }(-1,0)
$$

At $(0,0)$, the second derivative matrix is

$$
\left[\begin{array}{cc}
6+12 x & 0 \\
0 & 4+12 y^{2}
\end{array}\right]_{\substack{x=0 \\
y=0}}=\left[\begin{array}{ll}
6 & 0 \\
0 & 4
\end{array}\right]
$$

Since $\operatorname{det}(H)=24>0$ and $f_{x x}>0$, by the second derivative test $(0,0)$ is a local minimum point.

At $(-1,0)$, the second derivative matrix is

$$
\left[\begin{array}{cc}
6+12 x & 0 \\
0 & 4+12 y^{2}
\end{array}\right]_{\substack{x=-1 \\
y=0}}=\left[\begin{array}{cc}
-6 & 0 \\
0 & 4
\end{array}\right]
$$

Since $\operatorname{det}(H)=-24<0$, by the second derivative test $(-1,0)$ is a saddle point.

1. (d) Note that

$$
f(x, y)=3 x^{2} y+3 x y^{2}+x y
$$

Now set

$$
\begin{aligned}
& f_{x}=6 x y+3 y^{2}+y=y(6 x+3 y+1)=0 \\
& f_{y}=3 x^{2}+6 x y+x=x(3 x+6 y+1)=0
\end{aligned}
$$

If $x \neq 0$ and $y \neq 0$, we get

$$
\begin{aligned}
& 6 x+3 y+1=0 \\
& 3 x+6 y+1=0
\end{aligned}
$$

Solving this gives a critical point

$$
(x, y)=\left(-\frac{1}{9},-\frac{1}{9}\right)
$$

If $x \neq 0$ and $y=0$, we get

$$
\begin{aligned}
& y=0 \\
& 3 x+6 y+1=0
\end{aligned}
$$

Solving this gives a critical point

$$
(x, y)=\left(-\frac{1}{3}, 0\right)
$$

If $x=0$ and $y \neq 0$, we get

$$
\begin{aligned}
& 6 x+3 y+1=0 \\
& x=0
\end{aligned}
$$

Solving this gives a critical point

$$
(x, y)=\left(0,-\frac{1}{3}\right)
$$

Finally, if $x=0$ and $y=0$, then the equations are satisfied and we get the last critical point

$$
(x, y)=(0,0)
$$

At $(-1 / 9,-1 / 9)$, the second derivative matrix is

$$
\left[\begin{array}{cc}
6 y & 6 x+6 y+1 \\
6 x+6 y+1 & 6 x
\end{array}\right]_{\substack{x=-1 / 9 \\
y=-1 / 9}}=\left[\begin{array}{cc}
-2 / 3 & -1 / 3 \\
-1 / 3 & -2 / 3
\end{array}\right]
$$

Since $\operatorname{det}(H)=1 / 3>0$ and $f_{x x}<0$, by the second derivative test $(-1 / 9,-1 / 9)$ is a local maximum point.

At $(-1 / 3,0)$, the second derivative matrix is

$$
\left[\begin{array}{cc}
6 y & 6 x+6 y+1 \\
6 x+6 y+1 & 6 x
\end{array}\right]_{\substack{x=-1 / 3 \\
y=0}}=\left[\begin{array}{cc}
0 & -1 \\
-1 & -2
\end{array}\right]
$$

Since $\operatorname{det}(H)=-1<0$, by the second derivative test $(-1 / 3,0)$ is a saddle point. Similarly, $(0,-1 / 3)$ is a saddle point.

At $(0,0)$, the second derivative matrix is

$$
\left[\begin{array}{cc}
6 y & 6 x+6 y+1 \\
6 x+6 y+1 & 6 x
\end{array}\right]_{\substack{x=0 \\
y=0}}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Since $\operatorname{det}(H)=-1<0$, by the second derivative test $(0,0)$ is an saddle point.

1. (e) Solving

$$
\begin{aligned}
& f_{x}=4 x^{3}-4 y=0 \\
& f_{y}=4 y^{3}-4 x=0
\end{aligned}
$$

gives $x^{9}-x=x\left(x^{8}-1\right)=0$. Therefore $x=0, \pm 1$ and $y=x^{3}$. So there are 3 critical points:

$$
(0,0),(1,1) \text { and }(-1,-1)
$$

At $(0,0)$, the second derivative matrix is

$$
\left[\begin{array}{cc}
12 x^{2} & -4 \\
-4 & 12 y^{2}
\end{array}\right]_{\substack{x=0 \\
y=0}}=\left[\begin{array}{cc}
0 & -4 \\
-4 & 0
\end{array}\right]
$$

Since $\operatorname{det}(H)=-16<0$, by the second derivative test $(0,0)$ is a saddle point.
At $(1,1)$, the second derivative matrix is

$$
\left[\begin{array}{cc}
12 x^{2} & -4 \\
-4 & 12 y^{2}
\end{array}\right]_{\substack{x=0 \\
y=0}}=\left[\begin{array}{cc}
12 & -4 \\
-4 & 12
\end{array}\right]
$$

Since $\operatorname{det}(H)>0$ and $f_{x x}>0$, by the second derivative test $(1,1)$ is a local minimum point. Similarly, $(-1,-1)$ is a local minimum point.
2. To find the critical points, compute and set the partial derivatives equal to 0 .

$$
\begin{align*}
& f_{x}=2 x+2(x-y)=4 x-2 y=0 \tag{1}\\
& f_{y}=-2(x-y)+2(y-z)=-2 x+4 y-2 z=0 \tag{2}\\
& f_{z}=-2(y-z)+2(z-1)=-2 y+4 z-2=0 \tag{3}
\end{align*}
$$

From (1), we get

$$
y=2 x
$$

Plug this into (2), we get

$$
z=3 x
$$

Plug these two into (3), we get

$$
8 x=2
$$

Therefore $x=1 / 4$, and so

$$
(x, y, z)=\left(\frac{1}{4}, \frac{2}{4}, \frac{3}{4}\right)
$$

is the unique critical point.
3. Suppose the vertex of the rectangular box in the first octant is (x, y, z). Then the volume of the box is given by $(2 x)(2 y)(2 z)=8 x y z$, where (x, y, z) is restricted to the given surface. So we need to maximize

$$
f=8 x y z
$$

subject to the constraint

$$
g=x^{4}+y^{4}+z^{4}-1=0
$$

Using the method of Lagrange multiplier, we need to solve

$$
\begin{aligned}
& f_{x}=\lambda g_{x} \\
& f_{y}=\lambda g_{y} \\
& f_{z}=\lambda g_{z} \\
& g=0
\end{aligned}
$$

i.e.

$$
\begin{align*}
& 8 y z=\lambda 4 x^{3} \tag{4}\\
& 8 x z=\lambda 4 y^{3} \tag{5}\\
& 8 x y=\lambda 4 z^{3} \tag{6}\\
& x^{4}+y^{4}+z^{4}=1 \tag{7}
\end{align*}
$$

Multiply (4) by x, (5) by y, (6) by z, we get

$$
\begin{aligned}
8 x y z & =\lambda 4 x^{4} \\
8 x y z & =\lambda 4 y^{4} \\
8 x y z & =\lambda 4 z^{4}
\end{aligned}
$$

Since the left hand sides are all equal, we get

$$
\lambda 4 x^{4}=\lambda 4 y^{4}=\lambda 4 z^{4}
$$

Note that $\lambda \neq 0$, since otherwise by (4) we get $y z=0$, contradicting the fact that the maximum volume (supposedly exists) $8 x y z$ should be positive. Now we can cancel out $\lambda 4$ and get

$$
x^{4}=y^{4}=z^{4}
$$

Since x, y, z are all positive, this implies

$$
x=y=z
$$

Finally, plug this into (7), we get

$$
3 x^{4}=1
$$

i.e.

$$
x=\frac{1}{\sqrt[4]{3}}
$$

So to maximize the volume, we need

$$
x=y=z=\frac{1}{\sqrt[4]{3}}
$$

and the maximum volume is

$$
\begin{array}{|c|}
\hline \frac{8}{3^{3 / 4}} \\
\hline
\end{array}
$$

4. Let (x, y, z) be a point on the surface, then its distance to the origin is

$$
\sqrt{x^{2}+y^{2}+z^{2}}
$$

So we need to minimize $\sqrt{x^{2}+y^{2}+z^{2}}$ subject to the constraint

$$
g=x^{2}+4 y^{2}+9 z^{2}-36=0
$$

For convenience we may instead minimize the squared distance

$$
f=x^{2}+y^{2}+z^{2}
$$

By the method of Lagrange multiplier, we need to solve

$$
\begin{align*}
& 2 x=\lambda 2 x \tag{8}\\
& 2 y=\lambda 8 y \tag{9}\\
& 2 z=\lambda 18 z \tag{10}\\
& x^{2}+4 y^{2}+9 z^{2}=36 \tag{11}
\end{align*}
$$

If $x \neq 0$, then one can cancel out $2 x$ in (8) and get $\lambda=1$. But then (9) and (10) imply $y=0$ and $z=0$. And (11) in turn implies $x^{2}=36$, that is, $x= \pm 6$. So in this case we get two critical points: $(\pm 6,0,0)$.

If $x=0$ and $y \neq 0$, then one can cancel out $2 y$ in (8) and get $\lambda=1 / 4$. But then (10) implies $z=0$, and (11) in turn implies $4 y^{2}=36$, that is, $y= \pm 3$. So in this case we also get two critical points: $(0, \pm 3,0)$.

Finally, if $x=0$ and $y=0$, then (11) implies $9 z^{2}=36$, that is, $z= \pm 2$. So we get two more critical points: $(0,0, \pm 2)$.

Now by testing all the 6 critical points we see that $f(0,0,2)=f(0,0,-2)=4$ has the smallest value. So $(0,0, \pm 2)$ are the closest points to the origin. And the closest distance is 2 .
5.* It seems tricky to solve this problem using the method of Lagrange multiplier. Here we give a solution by reducing it to a one-variable optimization problem.

Suppose the cup has height h and the base has radius r. Then the area of the base is πr^{2}, and the area of the side is $2 \pi r h$. Since the density is 1 per unit area, the total mass is

$$
\begin{equation*}
\pi r^{2}+2 \pi r h=S \tag{12}
\end{equation*}
$$

The capacity (i.e. volume) we need to maximize is

$$
\begin{equation*}
f=\pi r^{2} h=r \cdot \pi r h \tag{13}
\end{equation*}
$$

From (12) we get

$$
\pi r h=\frac{S-\pi r^{2}}{2}
$$

Plug this into (13) we get

$$
f(r)=\frac{1}{2}\left(S r-\pi r^{3}\right)
$$

where $r>0$ and $\pi r^{2}<S$. So we only need to maximize the one-variable function $f(r)$ in its domain.

Now differentiate and set

$$
f^{\prime}(r)=\frac{1}{2}\left(S-3 \pi r^{2}\right)=0
$$

Since r is positive we get

$$
r=\sqrt{\frac{S}{3 \pi}}
$$

By the first derivative test this is the global maximum of $f(r)$ on the positive real line. So the maximum volume is

$$
\frac{1}{2} \sqrt{\frac{S}{3 \pi}}\left(S-\pi \frac{S}{3 \pi}\right)=\frac{1}{3 \sqrt{3 \pi}} S^{3 / 2}
$$

Chapter 6: Integrals

1. (a) One can rewrite the domain D as

$$
D=\{(x, y): 0 \leq x \leq 1,0 \leq y \leq x\}
$$

Therefore

$$
\begin{aligned}
\iint_{D} \sin \left(x^{2}\right) d A & =\int_{0}^{1} \int_{0}^{x} \sin \left(x^{2}\right) d y d x \\
& =\int_{0}^{1} x \sin \left(x^{2}\right) d x \\
& =\frac{1}{2} \int_{0}^{1} \sin (u) d u \quad\left(u=x^{2}\right) \\
& =\frac{1}{2}[-\cos (u)]_{0}^{1} \\
& =\frac{1-\cos (1)}{2}
\end{aligned}
$$

1. (b) One can rewrite the domain D as

$$
D=\{(x, y): 0 \leq x \leq 1,0 \leq y \leq \sqrt{x}\}
$$

Therefore

$$
\begin{aligned}
\iint_{D} \frac{y}{1+x^{2}} d A & =\int_{0}^{1} \int_{0}^{\sqrt{x}} \frac{y}{1+x^{2}} d y d x \\
& =\int_{0}^{1} \frac{1}{1+x^{2}}\left(\int_{0}^{\sqrt{x}} y d y\right) d x \\
& =\frac{1}{2} \int_{0}^{1} \frac{x}{1+x^{2}} d x \\
& =\frac{1}{4} \int_{1}^{2} \frac{1}{u} d u \quad\left(u=x^{2}+1\right) \\
& =\frac{1}{4}[\ln u]_{1}^{2} \\
& =\frac{\ln 2}{4}
\end{aligned}
$$

1. (c) Using the given order, we have

$$
\begin{aligned}
\iint_{D} x e^{y} d A & =\int_{0}^{1} \int_{\sqrt{y}}^{y} x e^{y} d x d y \\
& =\frac{1}{2} \int_{0}^{1} e^{y}\left(y^{2}-y\right) d y \\
& =\frac{1}{2} \int_{0}^{1} y^{2} e^{y} d y-\frac{1}{2} \int_{0}^{1} y e^{y} d y \\
& =\frac{1}{2} \int_{0}^{1} y^{2} d e^{y}-\frac{1}{2} \int_{0}^{1} y e^{y} d y \\
& =\frac{1}{2}\left(\left.y^{2} e^{y}\right|_{0} ^{1}-2 \int_{0}^{1} y e^{y} d y\right)-\frac{1}{2} \int_{0}^{1} y e^{y} d y \quad \text { (integrate by parts) } \\
& =\frac{e}{2}-\frac{3}{2} \int_{0}^{1} y e^{y} d y \\
& =\frac{e}{2}-\frac{3}{2}\left(\left.y e^{y}\right|_{0} ^{1}-\int_{0}^{1} e^{y} d y\right) \quad \text { (integrate by parts) } \\
& =\frac{e}{2}-\frac{3}{2}(e-(e-1)) \\
& =\frac{e}{2}-\frac{3}{2}
\end{aligned}
$$

1. (d) Using the polar coordinates, we can write the domain D as

$$
D=\{(x, y): 0 \leq \theta \leq 2 \pi, 0 \leq r \leq \sqrt{2}\}
$$

Therefore

$$
\begin{aligned}
\iint_{D} \sqrt{4-x^{2}-y^{2}} d A & =\int_{0}^{2 \pi}\left(\int_{0}^{\sqrt{2}} \sqrt{4-r^{2}} r d r\right) d \theta \\
& =\int_{0}^{2 \pi}\left(-\frac{1}{2} \int_{4}^{2} \sqrt{u} d u\right) d \theta \quad\left(u=4-r^{2}\right) \\
& =\int_{0}^{2 \pi}\left(-\frac{1}{2}\left[\frac{2}{3} u^{3 / 2}\right]_{4}^{2}\right) d \theta \\
& =\int_{0}^{2 \pi} \frac{1}{3}\left(4^{3 / 2}-2^{3 / 2}\right) d \theta \\
& =\frac{4 \pi}{3}(4-\sqrt{2})
\end{aligned}
$$

2. (a) This is the region under the graph $z=y$ over the domain D, where D is bounded by $y^{2}=4-x, y^{2}=x$ in the first quadrant. Alternatively,

$$
D=\left\{(x, y): 0 \leq y \leq \sqrt{2}, y^{2} \leq x \leq 4-y^{2}\right\}
$$

Therefore the volume equals

$$
\begin{aligned}
\iint_{D} y d A & =\int_{0}^{\sqrt{2}} \int_{y^{2}}^{4-y^{2}} y d x d y \\
& =\int_{0}^{\sqrt{2}} y\left(4-y^{2}-y^{2}\right) d y \\
& =\int_{0}^{\sqrt{2}}\left(4 y-2 y^{3}\right) d y \\
& =\left[2 y^{2}-\frac{y^{4}}{2}\right]_{0}^{\sqrt{2}} \\
& =4-2 \\
& =2
\end{aligned}
$$

2. (b) This is the region between the graphs $z=\sqrt{x^{2}+y^{2}}$ and $z=x^{2}+y^{2}$ over the domain D, where D is bounded by the intersection of the two graphs, and is restricted to the first quadrant. More precisely,

$$
D=\left\{(x, y): x^{2}+y^{2} \leq 1, x \geq 0, y \geq 0\right\}
$$

Therefore, using the polar coordinates, the volume equals

$$
\begin{aligned}
\iint_{D} \sqrt{x^{2}+y^{2}}-\left(x^{2}+y^{2}\right) d A & =\int_{0}^{\pi / 2} \int_{0}^{1}\left(r-r^{2}\right) r d r d \theta \\
& =\int_{0}^{\pi / 2} \int_{0}^{1}\left(r^{2}-r^{3}\right) d r d \theta \\
& =\int_{0}^{\pi / 2}\left(\frac{1}{3}-\frac{1}{4}\right) d \theta \\
& =\frac{\pi}{24}
\end{aligned}
$$

