Math 234 Review

Chapter 5: Maxima and Minima

1. (a) Solving

fo=4z+6y+6=0
f, =62+ 10y +10 =0

gives a unique critical point

(z,y) =1(0,—1)

The second derivative matrix at (0, —1) is

i bt i

Since det(H) = 40 — 36 > 0 and f,, > 0, by the second derivative test (0,—1) is a local
minimum point.

1. (b) Solving

fe=2x+3y—1=0
fy=3x+4y =0

gives a unique critical point
(ZL’, y) = (_47 3)

The second derivative matrix at (—4,3) is

w- (s w10

Since det(H) = 8 — 9 < 0, by the second derivative test (—4,3) is a saddle point.
1. (c) Solving

fe =06+ 62> =6x(1+2)=0
fy=4y+4° =4y(1+y*) =0

gives x = 0, —1 and y = 0. So there are 2 critical points:

(0,0)| and | (—1,0)

[0

At (0,0), the second derivative matrix is

6+ 12z 0
0 4 + 129>

x=0
y=0



Since det(H) = 24 > 0 and f,, > 0, by the second derivative test (0,0) is a local minimum
point.

At (—1,0), the second derivative matrix is

6+ 12 0 [ -6 0
0 4412y* |—n | 0 4

y=0

Since det(H) = —24 < 0, by the second derivative test (—1,0) is a saddle point.

1. (d) Note that
flz,y) = 322y + 3zy® + zy

Now set

fx:6xy+3y2—|—y=y(6a7—l—3y—l—1):()
fy=32"+6zy+z=xBr+6y+1)=0

If 2 # 0 and y # 0, we get

6r+3y+1=0
3r+6y+1=0
Solving this gives a critical point
(0.9) =|(~5.—3)
If 2 # 0 and y =0, we get
y=20

3z +6y+1=0

Solving this gives a critical point

If 2 =0and y # 0, we get

6z +3y+1=0
rz=20

Solving this gives a critical point




Finally, if = 0 and y = 0, then the equations are satisfied and we get the last critical
point

(z,y) =] (0,0)

At (—1/9,—1/9), the second derivative matrix is
6y 6x + 6y + 1 | —2/3 —-1/3
6m+6y—|—1 6x z=—1/9 N —1/3 —2/3

——1/9

Since det(H) = 1/3 > 0 and f,, < 0, by the second derivative test (—1/9,—1/9) is a local
maximum point.

At (—1/3,0), the second derivative matrix is

6y 6z + 6y + 1 1 0 -1
6x + 6y + 1 6x e—13 | —1 =2
=0

Since det(H) = —1 < 0, by the second derivative test (—1/3,0) is a saddle point. Similarly,
(0,—1/3) is a saddle point.

At (0,0), the second derivative matrix is

6y 6z + 6y + 1 101
6x + 6y + 1 6x =0 | 10

y=0
Since det(H) = —1 < 0, by the second derivative test (0,0) is an saddle point.
1. (e) Solving

fo=42° —4y=0
fy=4y" -4z =0

gives 1° —x = x(2® — 1) = 0. Therefore z = 0, +1 and y = 2. So there are 3 critical points:

(0,0)},| (1,1)| and | (=1, —1)

At (0,0), the second derivative matrix is
1222 —4 (o -4
4 122 o | =4 0
=0

Since det(H) = —16 < 0, by the second derivative test (0,0) is a saddle point.

Yy
At (1,1), the second derivative matrix is

1222 —4 12 —4
—4 12 — | -4 12

z=0
y=0



Since det(H) > 0 and f,, > 0, by the second derivative test (1,1) is a local minimum
point. Similarly, (—1, —1) is a local minimum point.

2. To find the critical points, compute and set the partial derivatives equal to 0.

fo=20+2x—y)=4r—-2y=0 (1)
fu="2—y)+2(y—2) =—-2x+4y—22=0 (2)
fr==2y—2)+2(z—1)=—-2y+42—-2=0 (3)
From (1), we get
Yy =2
Plug this into (2), we get
z = 3x
Plug these two into (3), we get
8r =2
Therefore x = 1/4, and so
123
(I’, Y, Z) - (Za 17 Z)

is the unique critical point.

3. Suppose the vertex of the rectangular box in the first octant is (z,y, z). Then the volume
of the box is given by (22)(2y)(22) = 8zyz, where (x,y, z) is restricted to the given surface.
So we need to maximize

f=8zyz

subject to the constraint
g=at4+yt+21—1=0

Using the method of Lagrange multiplier, we need to solve
fy = Agy

fz:/\gz
g=0

i.e.

[N

8yz = Ma?
8rz = \My?
Sry = Mz?
oyt 42t =1

(S

—~ ~ —~
~N
~—_ — — ~—



Multiply (4) by z, (5) by y, (6) by z, we get

8ryz = Mzt
8xyz = My!
Sryz = \z*

Since the left hand sides are all equal, we get
Mzt = My* = Mz

Note that A # 0, since otherwise by (4) we get yz = 0, contradicting the fact that the
maximum volume (supposedly exists) 8zyz should be positive. Now we can cancel out \
and get

Since x,y, z are all positive, this implies

r=y=z
Finally, plug this into (7), we get
3zt =1
1.e.
1
r=—
V3
So to maximize the volume, we need
1
xr = =z =
y \yg
and the maximum volume is
8
37

4. Let (z,y, 2z) be a point on the surface, then its distance to the origin is
Va2 +y? + 22
So we need to minimize \/m subject to the constraint
g=2"+4* +92°-36=0
For convenience we may instead minimize the squared distance
f=22+9*+ 22

By the method of Lagrange multiplier, we need to solve

21 = N2 (8)
2y = A8y (9)
2z = A8z (10)

)

2% 4+ 4y* 4+ 92° = 36 (

—_
—_



If z # 0, then one can cancel out 2z in (8) and get A = 1. But then (9) and (10) imply
y=0and 2 =0. And (11) in turn implies 2% = 36, that is, x = £6. So in this case we get
two critical points: (£6,0,0).

If x =0 and y # 0, then one can cancel out 2y in (8) and get A = 1/4. But then (10)
implies 2 = 0, and (11) in turn implies 4y* = 36, that is, y = £3. So in this case we also get
two critical points: (0,+3,0).

Finally, if z = 0 and y = 0, then (11) implies 92% = 36, that is, 2 = £2. So we get two
more critical points: (0,0, £2).

Now by testing all the 6 critical points we see that f(0,0,2) = f(0,0,—2) = 4 has the
smallest value. So | (0,0, £2) | are the closest points to the origin. And the closest distance

is .

5.% It seems tricky to solve this problem using the method of Lagrange multiplier. Here we
give a solution by reducing it to a one-variable optimization problem.

Suppose the cup has height A and the base has radius r. Then the area of the base is
7r?, and the area of the side is 277h. Since the density is 1 per unit area, the total mass is

7r® 4+ 2nrh = S (12)
The capacity (i.e. volume) we need to maximize is
f=m*h=r-7rh (13)
From (12) we get
S —mr?
mrh =
2

Plug this into (13) we get
1
flr)= §(Sr — 7r®)

where > 0 and 7% < S. So we only need to maximize the one-variable function f(r) in
its domain.

Now differentiate and set

Since r is positive we get

By the first derivative test this is the global maximum of f(r) on the positive real line. So
the maximum volume is

2 37T(S W37T>_ 3\/37r5




Chapter 6: Integrals

1. (a) One can rewrite the domain D as

D={(z,y):0<zx<1,0<y <z}

/ /D sin(z?)dA = /0 1 /0 wsin(:vz)dydw

= / xsin(z?)dx
0

Therefore

1. (b) One can rewrite the domain D as

D={(z,y):0<2<1,0<y<Va}

Lz
// i dA:// Y__dyda
pl+a? o Jo 1+2°
1 1 VT
= [ () v

Therefore

T
1 !

:—/ x dx
2, 1422
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1 2

:Z[lnuh
In2




1. (c) Using the given order, we have

1 ry

// reVdA = / xe¥dxdy

D 0o Jyi
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1. (d) Using the polar coordinates, we can write the domain D as
D={(z,y):0<0<2r,0<r <2}

Therefore
// \/74—x2_y2d14:/%(/ﬁ\/rr?rdr)dé
0 0
- [T (=5 ) vanas =1
- [ (alae e

2. (a) This is the region under the graph z = y over the domain D, where D is bounded by
y? =4 — x, y> = x in the first quadrant. Alternatively,

D={(z,9):0<y<v2,y* <z <4-y}



Therefore the volume equals

\/5
= (4y — 2y°)dy
19v3
y
= 12 2__]
[y 2 1o
=4 -2

2. (b) This is the region between the graphs z = /22 + y? and z = 22 + y? over the domain
D, where D is bounded by the intersection of the two graphs, and is restricted to the first
quadrant. More precisely,

D={(z,y): 2> +y* <1,z >0,y >0}

Therefore, using the polar coordinates, the volume equals
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