Math 234 Review

Chapter 6: Moment of Inertia, Cylindrical and Spherical Coordinates

1. Compute the moment of inertia of the wooden cylinder

$$
D=\left\{(x, y, z): x^{2}+y^{2} \leq 10000,0 \leq z \leq 100\right\}
$$

around the z-axis. The density of the wood is

$$
\mu(x, y, z)=\frac{1}{x^{2}+y^{2}} e^{-x^{2}-y^{2}-z} .
$$

Hint: μ should be part of the integrand, since it is not constant.
2. Compute the moment of inertia of the ice cream

$$
D=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 1, z \geq \sqrt{x^{2}+y^{2}}\right\}
$$

around the z-axis. The density of the ice cream is $\mu=1$.
Hint: $\sin ^{3} \phi=\sin ^{2} \phi \sin \phi=\left(1-\cos ^{2} \phi\right) \sin \phi$.

Chapter 7: Vector Calculus

1. If \mathcal{C} is the helix given by

$$
\overrightarrow{\mathbf{x}}(t)=(\cos t, \sin t, t), 0 \leq t \leq 1000 .
$$

What is the average of $f=\cos \theta$ on \mathcal{C} ? Where θ is the angle between the position vector and the z-axis.
Hint: $\cos \theta=\frac{\overrightarrow{\mathbf{x}} \cdot \overrightarrow{\mathbf{e}_{3}}}{\|\overrightarrow{\mathbf{x}}\|\left\|\overrightarrow{\mathbf{e}_{3}}\right\|}$.
2. Let \mathcal{C} be the boundary of the ice cream

$$
D=\left\{(x, y): x^{2}+y^{2} \leq 1, x \geq 0, y \geq 0\right\} .
$$

Find the average x and y coordinates on \mathcal{C}.
3. If \mathcal{C} is the curve given by

$$
\overrightarrow{\mathbf{x}}(t)=\left(t, t^{2}, t^{3}\right), 0 \leq t \leq 1 .
$$

$\overrightarrow{\mathbf{F}}$ is the vector field $x \overrightarrow{\mathbf{e}}_{1}+y \overrightarrow{\mathbf{e}}_{2}+z \overrightarrow{\mathbf{e}}_{3}$. Compute the line integral

$$
\int_{\mathcal{C}} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{x}}
$$

4. If \mathcal{C} is the counter-clockwise traversed boundary of the region

$$
D=\{(x, y): 0 \leq x, y \leq 1\} .
$$

$\overrightarrow{\mathbf{F}}(x, y)=x^{2} y \overrightarrow{\mathbf{e}}_{1}+x y^{2} \overrightarrow{\mathbf{e}}_{2}$. (1) Compute the line integral

$$
\oint_{\mathcal{C}} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{x}}
$$

in two ways: directly, and by using Green's Theorem. (2) Is $\overrightarrow{\mathbf{F}}$ a conservative vector field? (3) Compute the flux integral

$$
\oint_{\mathcal{C}} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{N}} d s
$$

where $\overrightarrow{\mathrm{N}}$ is the outward normal.
5. If \mathcal{C} is the clockwise traversed boundary of the arch

$$
D=\left\{(x, y): 1 \leq x^{2}+y^{2} \leq 4, y \geq 0\right\} .
$$

$\overrightarrow{\mathbf{F}}(x, y)=\left(-x y^{2}, x^{2} y\right)$. (1) Compute the line integrals in two ways

$$
\oint_{\mathcal{C}} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{T}} d s \text { and } \oint_{\mathcal{C}} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{N}} d s
$$

(2) Is $\overrightarrow{\mathbf{F}}$ conservative or divergence-free?
6. Compute

$$
\oint_{\mathcal{C}}\left(y^{2}+x\right) e^{x} d x
$$

where \mathcal{C} is the clockwise traversed boundary of the region

$$
D=\{(x, y): 0 \leq x \leq 1, \sqrt{x} \leq y \leq 1\}
$$

7.* Check out the last homework assignment for surface integrals.

