Math 234 Discussion Worksheet - Oct 28

- 1. Consider a rectangular box of surface area 6.
 - (a) What is the largest possible volume of such a rectangular box?
 - (b) What is the smallest possible total length of the edges?
- **2.**^{*} What is the largest possible area of a triangle of perimeter 3? (*Hint:* $A = \sqrt{s(s-a)(s-b)(s-c)}$ where s = (a+b+c)/2.)

1. (a) Maximize V = xyz subject to the constraint

$$2xy + 2yz + 2zx = 6$$

Using Lagrange multiplier one should get x = y = z = 1, and so $V_{max} = 1$.

1. (b) Minimize L = 4x + 4y + 4z subject to the constraint

$$2xy + 2yz + 2zx = 6$$

Using Lagrange multiplier one should get x = y = z = 1, and so $L_{min} = 12$.

2. Note that s = 3/2 is a constant. Let x = s - a, y = s - b, z = s - c. Then the problem is the same as maximizing

$$A^2 = \frac{3}{2}xyz$$

subject to the constraint

$$x + y + z = \frac{3}{2}.$$

Using Lagrange multiplier one should get $x = y = z = \frac{1}{2}$, and so $A_{max} = \frac{\sqrt{3}}{4}$