Math 234 Discussion Worksheet - Oct 28

1. Consider a rectangular box of surface area 6 .
(a) What is the largest possible volume of such a rectangular box?
(b) What is the smallest possible total length of the edges?
2.* What is the largest possible area of a triangle of perimeter 3?
(Hint: $A=\sqrt{s(s-a)(s-b)(s-c)}$ where $s=(a+b+c) / 2$.)
2. (a) Maximize $V=x y z$ subject to the constraint

$$
2 x y+2 y z+2 z x=6 .
$$

Using Lagrange multiplier one should get $x=y=z=1$, and so $V_{\max }=1$.

1. (b) Minimize $L=4 x+4 y+4 z$ subject to the constraint

$$
2 x y+2 y z+2 z x=6 .
$$

Using Lagrange multiplier one should get $x=y=z=1$, and so $L_{\text {min }}=12$.
2. Note that $s=3 / 2$ is a constant. Let $x=s-a, y=s-b, z=s-c$. Then the problem is the same as maximizing

$$
A^{2}=\frac{3}{2} x y z
$$

subject to the constraint

$$
x+y+z=\frac{3}{2} .
$$

Using Lagrange multiplier one should get $x=y=z=\frac{1}{2}$, and so $A_{\max }=\frac{\sqrt{3}}{4}$.

