## Math 276 Discussion Worksheet 1

1. Compute $f^{\prime}(x)$ where $f$ is defined by the formula

$$
f(x)=\int_{-x^{2}}^{x^{2}} t^{3} d t
$$

2. Suppose $f$ is continuous everywhere. Show that

$$
F(x)=\int_{0}^{x}(x-t) f(t) d t .
$$

is twice differentiable and

$$
F^{\prime \prime}(x)=f(x) .
$$

3. Suppose $f$ is $(n+1)$ times differentiable. Prove that $f$ is a polynomial of the form $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ if and only if its $(n+1)$-th derivative $f^{(n+1)}(x)=0$.

## Hints

1. Write $\int_{-x^{2}}^{x^{2}}=\int_{-x^{2}}^{0}+\int_{0}^{x^{2}}$, and then apply the chain rule with $u=x^{2}$.
2. Write $(x-t) f(t)=x f(t)-t f(t)$.
3. Start with the case $n=0$ and then proceed by induction.
