Math 276 Discussion Worksheet 15

1. Determine the divergence or convergence of the series. Justify your answers.
a. $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$
b. $\sum_{n=2}^{\infty} \frac{\sin (n)}{n(\log n)^{1.1}}$
c. $\sum_{n=1}^{\infty} \frac{10^{\log n} n^{2}}{2^{n}}$
d. $\sum_{n=1}^{\infty} \frac{n!\sin \left(2^{n}\right)}{n^{n}}$
2. Define $f(x)=\sum_{n=1}^{\infty} \frac{\sin (n x)}{n^{2}}$. (a) Find the set of x at which $f(x)$ is well defined. (b) Find the set of x at which $f(x)$ is continuous. (c) Evaluate $\int_{0}^{2 \pi} f(x) d x$.
3. Determine the set of all x for which the power series converges.
a. $\sum_{n=1}^{\infty} n x^{n}$
b. $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$
c. $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
d. $\sum_{n=0}^{\infty}\left(2^{n}+3^{n}\right) x^{n}$
