Math 276 Discussion Worksheet 17

1. Find $f^{\prime}(x)$ if

$$
f(x)=\int_{\arctan \left(x^{2}\right)}^{\arccos \left(x^{2}\right)} u d u
$$

2. Compute the limits

$$
\lim _{x \rightarrow 0} \frac{\cos (x)-1+x^{2} / 2}{\tan ^{4} x}, \quad \lim _{x \rightarrow \infty}\left(\left(1-e^{-x}\right)^{-e^{x}}+\frac{\cos \left(e^{x}\right) x^{100}}{2^{x}}\right)
$$

3. Find the following antiderivative (assuming $x>1$)

$$
\int \frac{1}{x(\log x)} d x
$$

4. Compute the integral

$$
\int_{0}^{\pi} x^{2}(\cos x) d x
$$

5. Study convergence of the series

$$
\sum_{n=2}^{\infty}\left(\frac{(-1)^{n}}{n(\log n)^{\alpha}}+\frac{1}{2^{n}}\right)
$$

for all values of $\alpha \in \mathbb{R}$. If the series converges for some α, does it converge absolutely?
6* . Let

$$
S(x)=\sum_{n=1}^{\infty} \frac{\sin ^{2}(n x)}{n^{2}}
$$

Find

$$
\int_{0}^{\pi} S(x) d x
$$

and justify your answers. (Hint: $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$)
7. Find the radius of convergence for the following power series

$$
\sum_{n=1}^{\infty}\left((-1)^{n}+\log n\right) x^{5 n}
$$

Study the convergence of this series on the boundary of the interval of convergence.
8. Find the power series expansion for $f(x)$ if

$$
f(x)=\cos \left(x^{2}\right)+\frac{x}{1-x}
$$

What is the radius of convergence.
9. 10.11 .

