Math 276 Discussion Worksheet 1

1. Solution. Notice that

$$
\begin{aligned}
f(x) & =\int_{0}^{x^{2}} t^{3} d t+\int_{-x^{2}}^{0} t^{3} d t \\
& =\int_{0}^{x^{2}} t^{3} d t-\int_{0}^{-x^{2}} t^{3} d t .
\end{aligned}
$$

If we write

$$
F(u)=\int_{0}^{u} t^{3} d t,
$$

then

$$
f(x)=F\left(x^{2}\right)-F\left(-x^{2}\right) .
$$

Using the chain rule, we find

$$
f^{\prime}(x)=F^{\prime}\left(x^{2}\right)(2 x)-F^{\prime}\left(-x^{2}\right)(-2 x) .
$$

But

$$
F^{\prime}(u)=u^{3},
$$

so

$$
f^{\prime}(x)=\left(x^{2}\right)^{3}(2 x)-\left(-x^{2}\right)^{3}(-2 x)=0 .
$$

2. Solution. Notice that

$$
\begin{aligned}
F(x) & =\int_{0}^{x} x f(t)-t f(t) d t \\
& =\int_{0}^{x} x f(t) d t-\int_{0}^{x} t f(t) d t \\
& =x\left(\int_{0}^{x} f(t) d t\right)-\int_{0}^{x} t f(t) d t
\end{aligned}
$$

Applying the product rule to the first term, we find

$$
\begin{aligned}
F^{\prime}(x) & =\left(\int_{0}^{x} f(t) d t+x f(x)\right)-x f(x) \\
& =\int_{0}^{x} f(t) d t
\end{aligned}
$$

Therefore, F^{\prime} is differentiable and

$$
F^{\prime \prime}(x)=f(x) .
$$

3. Solution. Prove by induction on n. If $n=0$, then we need to show that $f=a_{0}$ if and only if $f^{\prime}=0$. But this is clearly true. Suppose that the statement holds for $n-1$, we now show that it also holds for n.

Indeed, it is easy to see that f is of the form

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

if and only if f^{\prime} is of the form

$$
\begin{equation*}
f^{\prime}(x)=b_{0}+b_{1} x+\cdots+b_{n-1} x^{n-1} \tag{1}
\end{equation*}
$$

Note that f^{\prime} is now n times differentiable. Thus by the induction hypothesis, (1) holds if and only if $\left(f^{\prime}\right)^{(n)}=0$, in other words,

$$
f^{(n+1)}=0 .
$$

This finishes the proof.

