Math 231 Review

1. Determine whether the statement is true or false.
(1) If $\lim _{x \rightarrow 5} f(x)=2$ and $\lim _{x \rightarrow 5} g(x)=0$, then $\lim _{x \rightarrow 5}[f(x) / g(x)]$ does not exist.
(2) If $\lim _{x \rightarrow 5} f(x)=0$ and $\lim _{x \rightarrow 5} g(x)=0$, then $\lim _{x \rightarrow 5}[f(x) / g(x)]$ does not exist.
(3) If f is a polynomial, then $\lim _{x \rightarrow a} f(x)=f(a)$.
(4) A function can have two different horizontal asymptotes.
(5) If the line $x=1$ is a vertical asymptote of $y=f(x)$, then f is not defined at 1 .
(6) If f is continuous at a, then f is differentiable at a.
(7) If f and g are differentiable, then $[f(x)+g(x)]^{\prime}=f^{\prime}(x)+g^{\prime}(x)$.
(8) If $f^{\prime}(a)$ exists, then $\lim _{x \rightarrow a} f(x)=f(a)$.
(9) If f has an absolute minimum value at c, then $f^{\prime}(c)=0$.
(10) If $f^{\prime \prime}(2)=0$, then $(2, f(2))$ is an inflection point of the curve $y=f(x)$.
(11) If f and g are increasing on an interval I, then $f+g$ is increasing on I.
(12) $\int_{a}^{b}[f(x) g(x)] d x=\left(\int_{a}^{b} f(x) d x\right)\left(\int_{a}^{b} g(x) d x\right)$.
(13) $\int_{a}^{b} x f(x) d x=x \int_{a}^{b} f(x) d x$.
(14) All continuous functions have antiderivatives.
(15) $\tan ^{-1}(-1)=\frac{3 \pi}{4}$.
(16) $\pi^{\sqrt{5}}=e^{\sqrt{5} \ln \pi}$.
(17) $\ln (x+y)=\ln x+\ln y$.
(18) $\left(10^{x}\right)^{\prime}=x 10^{x-1}$.
2. Find the limit.
(1) $\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}$
(2) $\lim _{x \rightarrow-\infty} \frac{1-2 x^{2}-x^{4}}{5+x-3 x^{4}}$
(3) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+4 x+1}-x\right)$
(4) $\lim _{s \rightarrow 16} \frac{4-\sqrt{s}}{s-16}$
(5) $\lim _{x \rightarrow 0} \cos (x+\sin x)$
3. Differentiate the function.
(1) $y=\frac{x^{2}-x+2}{\sqrt{x}}$
(2) $y=x^{2} \sin \pi x$
(3) $y=\frac{\tan x}{1+\cos x}$
(4) $y=\sin (\cos x)$
(5) $y=\ln (x \ln x)$
(6) $y=e^{\tan (2 \theta)}$
(7) $y=\frac{e^{t}}{1+e^{t}}$
(8) $y=(\cos x)^{x}$
(9) $y=3^{x \ln x}$
(10) $y=\sqrt{\arctan x}$
(11) $y=(\arcsin (2 x))^{2}$
(12) $y=\sin ^{-1}\left(e^{x}\right)$
4. Find an equation of the tangent line to the curve at the given point.
(1) $y=\sqrt{1+4 \sin x},(x, y)=(0,1)$
(2) $x^{2}+4 x y+y^{2}=13,(x, y)=(2,1)$
5. Let $f(x)=200+8 x^{3}+x^{4}$.
(1) Find the intervals of increase or decrease.
(2) Find the local maximum and minimum values.
(3) Find the intervals of concavity and the inflection points.
(4) Use (1)-(3) to sketch the graph of f.
6. Evaluate the integral.
(1) $\int \frac{1+t+t^{2}}{\sqrt{t}} d t$
(2) $\int \frac{x^{5}-x^{4}+2 x}{x^{4}} d x$
(3) $\int_{0}^{1} y\left(y^{2}+1\right)^{5} d y$
(4) $\int_{0}^{\pi / 4}(1+\tan t)^{3} \sec ^{2} t d t$
(5) $\int \sin (\pi t) \cos (\pi t) d t$
(6) $\int \frac{x+1}{x^{2}+2 x} d x$
(7) $\int_{0}^{4} \frac{1}{16+t^{2}} d t$
(8) $\int \frac{x}{\sqrt{1-x^{2}}} d t$
(9) $\int_{0}^{1} \frac{1}{e^{\pi x}} d x$
(10) $\int_{0}^{3} \frac{1}{5 x+1} d x$
(11) $\int \frac{\cos x}{2+\sin x} d x$
7. A particle is moving with the given data. Find the position fo the particle.
(1) $a(t)=10 \sin t+3 \cos t, s(0)=0, s(2 \pi)=12$.
(2) $a(t)=t^{2}-4 t+6, s(0)=0, s(1)=20$.
8. At noon, ship A is 150 km west of ship B. Ship A is sailing east at $35 \mathrm{~km} / \mathrm{h}$ and ship B is sailing north at $25 \mathrm{~km} / \mathrm{h}$. How fast is the distance between the ships changing at 4:00 PM?
9. The top of a ladder slides down a vertical wall at a rate of $0.15 \mathrm{~m} / \mathrm{s}$. At the moment when the bottom of the ladder is 3 m from the wall, it slides away from the wall at a rate of $0.2 \mathrm{~m} / \mathrm{s}$. How long is the ladder?
10. A box with a square base and open top must have a volume of $32,000 \mathrm{~cm}^{3}$. Find the dimensions of the box that minimize the amount of material used.
11. A right circular cylinder is inscribed in a sphere of radius 1. Find the largest possible volume of such a cylinder.
