1. (a) 1 (b) 1 (c) 2 (d) DNE (e) 0

2. (a) $x^2 - 4 \neq 0$ implies $(x - 2)(x + 2) \neq 0$. Therefore $x \neq -2, 2$.

(b) We need $x \ge 0$ so that \sqrt{x} makes sense; we also need $1 - \sqrt{x} \ge 0$ so that $\sqrt{1 - \sqrt{x}}$ makes sense. The second condition gives $\sqrt{x} \le 1$, that is $x \le 1$. So we conclude $0 \le x \le 1$.

3. $f \circ g(x) = \boxed{4x^2 + 4x}$ $g \circ f(x) = \boxed{2x^2 - 1}$

4. (a) The function is polynomial, so by direct substitution property we can substitute x by 1 in the expression to get

$$\lim_{x \to 1} \left[2(x+1)^2 - x^4(x+3) \right] = \boxed{4}$$

(b) By quotient law and root law, we can substitute x by 1 in the expression to get

$$\lim_{x \to -1} \frac{\sqrt[3]{x-7}}{\sqrt{x^2+1}} = \frac{\sqrt[3]{-8}}{\sqrt{2}} = \boxed{-\sqrt{2}}$$