1. (a) 1
(b) 1
(c) 2
(d) DNE
(e) 0
2. (a) $x^{2}-4 \neq 0$ implies $(x-2)(x+2) \neq 0$. Therefore $x \neq-2,2$.
(b) We need $x \geq 0$ so that \sqrt{x} makes sense; we also need $1-\sqrt{x} \geq 0$ so that $\sqrt{1-\sqrt{x}}$ makes sense. The second condition gives $\sqrt{x} \leq 1$, that is $x \leq 1$. So we conclude $0 \leq x \leq 1$.
3. $f \circ g(x)=4 x^{2}+4 x$
$g \circ f(x)=2 x^{2}-1$
4. (a) The function is polynomial, so by direct substitution property we can substitute x by 1 in the expression to get

$$
\lim _{x \rightarrow 1}\left[2(x+1)^{2}-x^{4}(x+3)\right]=4
$$

(b) By quotient law and root law, we can substitute x by 1 in the expression to get

$$
\lim _{x \rightarrow-1} \frac{\sqrt[3]{x-7}}{\sqrt{x^{2}+1}}=\frac{\sqrt[3]{-8}}{\sqrt{2}}=-\sqrt{2}
$$

