1.

(a) DNE, since x + 2 approaches -1 and x + 3 approaches 0^{\pm} (from both sides).

(b) $-\infty$, since 1-x approaches -1 and $(x-2)^2$ approaches 0^+ (from both the positive side).

(c) 2, multiplying out the products, one gets $4x^2 + 4x + 1$ on the top and $2x^2 - 2x$ at the bottom; now the general theorem applies since $x \to -\infty$.

(d) 0, multiply and divide by the conjugate $\sqrt{x+1} + \sqrt{x}$ and simplify.

(a)

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

(b) Use the formula in (a) with x = 1 to find the limit defining f'(1) = 3. (c) Use the point-slope formula to get an equation y - 3 = f'(1)(x - 1), which simplifies to y = 3x.

(d) Use the formula in (a) to find the limit defining $f'(x) = -1/x^2$