1. To find the critical numbers, set

$$
f^{\prime}(x)=6 x^{2}-6 x=0
$$

that is,

$$
6 x(x-1)=0
$$

Therefore $x=0$ and $x=1$ are the critical numbers. The corresponding critical points are $(0,4)$ and $(1,3)$. Next, the endpoints are $(-1,-1)$ and $(2,8)$.

So the maximum of f is $\max \{4,3,-1,8\}=8$, attained at $x=2$; the minimum of f is $\max \{4,3,-1,8\}=-1$, attained at $x=-1$.
2. We need to find c in $(-2,2)$ such that

$$
f^{\prime}(c)=\frac{f(2)-f(-2)}{2-(-2)}
$$

One computes that $f(2)=4, f(-2)=0$, and

$$
f^{\prime}(c)=3 c^{2}-3
$$

Therefore we need

$$
3 c^{2}-3=1
$$

Solving this gives

$$
c^{2}=\frac{4}{3}
$$

that is

$$
c= \pm \frac{2}{\sqrt{3}}
$$

which are both in $(-2,2)$.
Bonus. Following the hint, to show that $f(x)>0$ for any fixed $x>0$, we write

$$
f(x)=f(x)-f(0)
$$

using $f(0)=0$. By the MVT (with $a=0$ and $b=x$),

$$
f(x)-f(0)=f^{\prime}(c)(x-0)
$$

for some c in $(0, x)$. On the other hand, $f^{\prime}(c)=1-\cos (c) \geq 0$. Therefore

$$
f^{\prime}(c)(x-0)=(1-\cos (c)) x \geq 0
$$

This inequality is strict if $0<x \leq 2 \pi$, since

$$
\cos (c)<1
$$

for any c in $(0,2 \pi)$. If $c>2 \pi$, we can write

$$
f(x)=[f(x)-f(2 \pi)]+f(2 \pi) .
$$

By the same argument as above

$$
f(x)-f(2 \pi) \geq 0
$$

On the other hand, taking $x=2 \pi$ we see that $f(2 \pi)>0$. Therefore

$$
[f(x)-f(2 \pi)]+f(2 \pi)>0 .
$$

This finishes the proof.

