1. Recall that

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
$$

Since $f^{\prime}(x)=3 x^{2}+1$, we have $f^{\prime}(-1)=4$ and $f(-1)=1$. Therefore

$$
x_{2}=-1-\frac{1}{4}=-1.25
$$

2. By antidifferentiation, we see that $f$ must be of the form

$$
f(x)=\frac{x^{3}}{3}+\cos x+C
$$

Using the condition $f(0)=0$, we get $C=-1$. So

$$
f(x)=\frac{x^{3}}{3}+\cos x-1
$$

3. Denote the dimension of the square base by $x$ and the height of the box by $y$. We need to minimize the area of the box (with open top)

$$
A=x^{2}+4 x y
$$

subject to the volume constraint

$$
V=x^{2} y=4000
$$

Solving from the constraint we get

$$
y=\frac{4000}{x^{2}}
$$

Therefore we can write

$$
A(x)=x^{2}+4 x \frac{4000}{x^{2}}=x^{2}+\frac{16000}{x}
$$

where $x>0$ can be any positive real number.
To minimize $A(x)$ we find the critical number(s) by solving

$$
A^{\prime}(x)=2 x-\frac{16000}{x^{2}}=0
$$

This equation gives a unique critical number $x=\sqrt[3]{8000}=20$. One can easily verify, for example by the 1 st derivative test, that $A(x)$ attains an absolute minimum at $x=20$.

To conclude, when the dimensions $x=20 \mathrm{~cm}$ and $y=\frac{4000}{20^{2}}=10 \mathrm{~cm}$, the material for making the box is minimized.

