Math 231 Practice Midterm 2

1. Let $f(x)=x^{4}-2 x^{3}+x^{2}$.
(i) Find the critical numbers of f.
(ii) Find the absolute maximum and minimum of f on the interval $[0,1]$.
2. Let $f(x)=4 x^{3}-6 x^{2}+1$.
(a) Find the intervals on which f is increasing or decreasing.
(b) Find the intervals of concavity and the inflection points.
(c) Sketch the graph of f.
3. A rectangular storage container with an open top is to have a volume of $20 \mathrm{~m}^{3}$. The length of its base is twice the width. Material for the base costs $\$ 5$ per square meter. Material for the sides costs $\$ 9$ per square meter. Find the cost of materials for the cheapest such container.
4. A particle is moving along a straight line with the given data. Find the position function $s(t)$.

$$
a(t)=20 t^{3}-30 t^{2}+10 t, s(0)=0, s(1)=0 .
$$

5. Evaluate the integral.
(a) $\int_{0}^{1}\left(1+x^{2}\right)^{2} d x$
(b) $\int_{1}^{4} \frac{3 y-2}{\sqrt{y}} d y$
(c) $\int_{0}^{2 \pi}\left(1-\sin ^{2} \theta\right) \cos \theta d \theta$
(d) $\int t e^{-t^{2}} d t$
(e) $\int \frac{1}{s \ln s} d s$
