1(a). $f(x)=\sqrt{x}-x^{3 / 2}$. So the antiderivatives of f are

$$
F(x)=\frac{2}{3} x^{3 / 2}-\frac{2}{5} x^{5 / 2}+C .
$$

1(b). $f(x)=x-2+x^{-1 / 2}$. So the antiderivatives of f are

$$
F(x)=\frac{1}{2} x^{2}-2 x+2 x^{1 / 2}+C
$$

2. Denote the dimension of the square base by x and the height of the box by y. We need to minimize the area of the box (containing the top)

$$
A=2 x^{2}+4 x y
$$

subject to the volume constraint

$$
V=x^{2} y=16000
$$

Solving from the constraint we get

$$
y=\frac{16000}{x^{2}}
$$

Therefore we can write

$$
A(x)=2 x^{2}+4 x \frac{16000}{x^{2}}=2 x^{2}+\frac{64000}{x}
$$

where $x>0$ can be any positive real number.
To minimize $A(x)$ we find the critical number(s) by solving

$$
A^{\prime}(x)=4 x-\frac{64000}{x^{2}}=0 .
$$

This equation gives a unique critical number $x=\sqrt[3]{16000}=20 \sqrt[3]{2}$. One can easily verify, for example by the first derivative test, that $A(x)$ attains an absolute minimum at $x=20 \sqrt[3]{2} \approx$ 25.198.

To conclude, when the dimensions $x=20 \sqrt[3]{2} \mathrm{~cm}$ and $y=\frac{16000}{x^{2}}=20 \sqrt[3]{2} \mathrm{~cm}$, the material for making the box is minimized.

