Theorem 2.6.4 (Bolzano-Weierstrass Theorem) If the sequence $\{a_n\}_{n=1}^{\infty}$ is bounded, then it has a convergent subsequence.

Proof. (Some pictures of the proof can be found here, where $\{a_n\}$ is denoted $\{x_n\}$.) Since the sequence $\{a_n\}_{n=1}^{\infty}$ is bounded, there exists M > 0 such that

$$|a_n| \le M, \ \forall n \ge 1.$$

In other words,

$$a_n \in [-M, M], \forall n \ge 1$$
. (the symbol \in means 'belongs to')

We now describe how we can find inductively a convergent subsequence $\{a_{n_k}\}_{k=1}^{\infty}$ of $\{a_n\}_{n=1}^{\infty}$.

First, let $n_1 = 1$ and $I_1 = [-M, M]$. Suppose n_k and I_k have been chosen, we now proceed to choose n_{k+1} and I_{k+1} . Divide I_k into two intervals of equal length, denoted J_1 and J_2 . Consider two cases:

Case 1: If there are infinitely many indexes n such that $a_n \in J_1$, then we can find one such n with $n > n_k$ (since there are infinitely many of them). Take n_{k+1} to be this n. Take I_{k+1} to be J_1 . This finishes our choice of n_{k+1} and I_{k+1} .

Case 2: If otherwise there only finitely many indexes n such that $a_n \in J_1$, then there must be infinitely many indexes n such that $a_n \in J_2$. In particular we can find one such nwith $n > n_k$. In this case, take n_{k+1} to be this n, and take I_{k+1} to be J_2 .

By induction we obtain a subsequence $\{a_{n_k}\}_{k=1}^{\infty}$ which satisfies

$$a_{n_k} \in I_k, \ \forall k \ge 1.$$

Observe also that the intervals I_k satisfy

$$I_{k+1} \subset I_k$$
 (nested; the symbol \subset means 'is contained in')

and

$$|I_k| = \frac{2M}{2^{k-1}}$$
 (shrinking; here $|I_k|$ denotes the length of I_k).

To show that $\{a_{n_k}\}_{k=1}^{\infty}$ is convergent, by Theorem 2.5.9 it remains/suffices to show that $\{a_{n_k}\}_{k=1}^{\infty}$ is a Cauchy sequence. To this end, let $\varepsilon > 0$ be any given positive number. Since

$$\lim_{k \to \infty} \frac{2M}{2^{k-1}} = 0,$$

there exists k^* such that

$$\frac{2M}{2^{k^*-1}} < \varepsilon$$

For all $k \ge k^*$ and $\ell \ge k^*$, by the nesting property of the intervals I_k , we have

$$a_{n_k} \in I_k \subset I_{k-1} \subset \cdots \subset I_{k^*}$$

and

$$a_{n_{\ell}} \in I_{\ell} \subset I_{\ell-1} \subset \cdots \subset I_{k^*}.$$

In particular, both a_{n_k} and a_{n_ℓ} are contained in $I_{k^*}.$ From this we obtain

$$|a_{n_k} - a_{n_\ell}| \le |I_{k^*}|.$$

On the other hand, by our choice of $k^\ast,$

$$|I_{k^*}| = \frac{2M}{2^{k^*-1}} < \varepsilon.$$

Combining these, we get

$$|a_{n_k} - a_{n_\ell}| < \varepsilon, \ \forall k, \ell \ge k^*.$$

By definition, this shows $\{a_{n_k}\}_{k=1}^{\infty}$ is a Cauchy sequence, and the proof is complete. \Box