
5.3#6(a) (⇒) Suppose f ′(c) ≥ 0 for all c ∈ (a, b). Then for any x, y ∈ (a, b) with x < y, by
the Mean Value Theorem we have, for some c ∈ (x, y)

f(y)− f(x)

y − x
= f ′(c)

or, equivalently,
f(y)− f(x) = f ′(c)(y − x).

Since f ′(c) ≥ 0 and y − x > 0, it follows that f(y) − f(x) ≥ 0, that is, f(y) ≥ f(x). This
shows f is increasing, since f(y) ≥ f(x) whenever x > y.
(⇐) Suppose f is increasing on (a, b). We show that f ′(x) ≥ 0 for all x ∈ (a, b). By the
definition of derivative, we have

f ′(x) = lim
y→x

f(y)− f(x)

y − x
= lim

y→x+

f(y)− f(x)

y − x
.

On the other hand, for any x < y < b, since f is increasing, we have f(y) − f(x) ≥ 0.
Therefore

f(y)− f(x)

y − x
≥ 0

for all y ∈ (x, b). Taking the limit as y → x+, we get f ′(x) ≥ 0, as desired.

5.3#15(e) Take f(x) = sin(x). Note that f is differentiable on (−∞,∞) and f ′(x) = cos(x).
Suppose x < y. By the Mean Value Theorem, we have for some c ∈ (x, y),

f(y)− f(x) = f ′(c)(x− y).

Therefore
| sin(y)− sin(x)| = | cos(c)||x− y|.

But | cos(c)| ≤ 1. So we obtain

| sin(y)− sin(x)| ≤ |x− y|.

If x > y, then reverting x and y in the argument above gives that same bound. Finally, if
x = y, then trivially

| sin(y)− sin(x)| = 0 ≤ |x− y|.

Therefore | sin(y)− sin(x)| ≤ |x− y| holds for all x and y.
For the second part of the question, notice that since sin(x) is an odd function, we have

sin(x) = − sin(−x). Therefore, applying the inequality proven above, we get

| sin(y) + sin(x)| = | sin(y)− sin(−x)| ≤ |y − (−x)| = |y + x|.

This shows
| sin(y) + sin(x)| ≤ |y + x|.



5.4#9 Suppose f ′′(x) = 0. Then by Corollary 5.3.7(a), we have

f ′(x) = a

for some constant a. Let g(x) = ax, then f ′(x) = g′(x) for all x. So by Corollary 5.3.7(b),
we must have

f(x) = g(x) + b

for some constant b. This shows
f(x) = ax + b,

as desired.

5.4#29 We prove the statement by induction. The case n = 1 is just Theorem 5.3.1 (Rolle’s
theorem). Suppose the statement holds for some n ≥ 1. Applying Theorem 5.3.1 to each
of the intervals [xk−1, xk], k = 1, · · · , n + 1, we obtain ck−1 ∈ (xk−1, xk), k = 1, · · · , n + 1
at which f ′(ck) = 0. Now f ′ is an n-times differentiable function with n + 1 distinct zeros
c0, · · · , cn. So by the induction hypothesis there must exist c such that

f (n+1)(c) = 0.

This completes the proof.


