$\mathbf{5 . 3} \# \mathbf{6}(\mathbf{a})(\Rightarrow)$ Suppose $f^{\prime}(c) \geq 0$ for all $c \in(a, b)$. Then for any $x, y \in(a, b)$ with $x<y$, by the Mean Value Theorem we have, for some $c \in(x, y)$

$$
\frac{f(y)-f(x)}{y-x}=f^{\prime}(c)
$$

or, equivalently,

$$
f(y)-f(x)=f^{\prime}(c)(y-x) .
$$

Since $f^{\prime}(c) \geq 0$ and $y-x>0$, it follows that $f(y)-f(x) \geq 0$, that is, $f(y) \geq f(x)$. This shows f is increasing, since $f(y) \geq f(x)$ whenever $x>y$.
(\Leftarrow) Suppose f is increasing on (a, b). We show that $f^{\prime}(x) \geq 0$ for all $x \in(a, b)$. By the definition of derivative, we have

$$
f^{\prime}(x)=\lim _{y \rightarrow x} \frac{f(y)-f(x)}{y-x}=\lim _{y \rightarrow x^{+}} \frac{f(y)-f(x)}{y-x} .
$$

On the other hand, for any $x<y<b$, since f is increasing, we have $f(y)-f(x) \geq 0$. Therefore

$$
\frac{f(y)-f(x)}{y-x} \geq 0
$$

for all $y \in(x, b)$. Taking the limit as $y \rightarrow x^{+}$, we get $f^{\prime}(x) \geq 0$, as desired.
5.3\#15(e) Take $f(x)=\sin (x)$. Note that f is differentiable on $(-\infty, \infty)$ and $f^{\prime}(x)=\cos (x)$. Suppose $x<y$. By the Mean Value Theorem, we have for some $c \in(x, y)$,

$$
f(y)-f(x)=f^{\prime}(c)(x-y) .
$$

Therefore

$$
|\sin (y)-\sin (x)|=|\cos (c)||x-y|
$$

But $|\cos (c)| \leq 1$. So we obtain

$$
|\sin (y)-\sin (x)| \leq|x-y|
$$

If $x>y$, then reverting x and y in the argument above gives that same bound. Finally, if $x=y$, then trivially

$$
|\sin (y)-\sin (x)|=0 \leq|x-y|
$$

Therefore $|\sin (y)-\sin (x)| \leq|x-y|$ holds for all x and y.
For the second part of the question, notice that $\operatorname{since} \sin (x)$ is an odd function, we have $\sin (x)=-\sin (-x)$. Therefore, applying the inequality proven above, we get

$$
|\sin (y)+\sin (x)|=|\sin (y)-\sin (-x)| \leq|y-(-x)|=|y+x|
$$

This shows

$$
|\sin (y)+\sin (x)| \leq|y+x| .
$$

5.4\#9 Suppose $f^{\prime \prime}(x)=0$. Then by Corollary 5.3.7(a), we have

$$
f^{\prime}(x)=a
$$

for some constant a. Let $g(x)=a x$, then $f^{\prime}(x)=g^{\prime}(x)$ for all x. So by Corollary 5.3.7(b), we must have

$$
f(x)=g(x)+b
$$

for some constant b. This shows

$$
f(x)=a x+b,
$$

as desired.
5.4\#29 We prove the statement by induction. The case $n=1$ is just Theorem 5.3.1 (Rolle's theorem). Suppose the statement holds for some $n \geq 1$. Applying Theorem 5.3.1 to each of the intervals $\left[x_{k-1}, x_{k}\right], k=1, \cdots, n+1$, we obtain $c_{k-1} \in\left(x_{k-1}, x_{k}\right), k=1, \cdots, n+1$ at which $f^{\prime}\left(c_{k}\right)=0$. Now f^{\prime} is an n-times differentiable function with $n+1$ distinct zeros c_{0}, \cdots, c_{n}. So by the induction hypothesis there must exist c such that

$$
f^{(n+1)}(c)=0
$$

This completes the proof.

