6.1\#2 The proof is the same as that of Lemma 6.1 .5 , with m_{i} replaced by M_{i}, and ' \leq ' replaced by ' \geq '. Note how to pass from $Q=P \cup\{c\}$ to general refinements of P.
6.1\#8 Suppose $P=\left\{x_{k}\right\}_{k=1}^{n}$. Note that, since

$$
f(x)+g(x) \leq \sup _{\left[x_{k-1}, x_{k}\right]} f+\sup _{\left[x_{k-1}, x_{k}\right]} g
$$

for all $x \in\left[x_{k-1}, x_{k}\right]$, we have

$$
\sup _{\left[x_{k-1}, x_{k}\right]}(f+g) \leq \sup _{\left[x_{k-1}, x_{k}\right]} f+\sup _{\left[x_{k-1}, x_{k}\right]} g .
$$

In other words,

$$
M_{k}(f+g) \leq M_{k}(f)+M_{k}(g)
$$

Therefore

$$
\begin{aligned}
U(P, f+g) & =\sum_{k=1}^{n} M_{k}(f+g) \Delta x_{k} \\
& \leq \sum_{k=1}^{n}\left(M_{k}(f)+M_{k}(g)\right) \Delta x_{k} \\
& =\sum_{k=1}^{n} M_{k}(f) \Delta x_{k}+\sum_{k=1}^{n} M_{k}(g) \Delta x_{k} \\
& =U(P, f)+U(P, g)
\end{aligned}
$$

This proves the inequality.
6.2\#13 By assumption, $f(x)=0$ except at finitely many points in $[a, b]$, say at $c_{1}<\cdots<c_{n}$. Without loss of generality, assume that $a<c_{1}$ and $c_{n}<b$ (otherwise the proof is similar). For sufficiently small $\varepsilon>0$, let P be the partition

$$
P=\left\{a, c_{1} \pm \varepsilon, \cdots, c_{n} \pm \varepsilon, b\right\}
$$

Since f takes value 0 outside of the intervals $\left(c_{k}-\varepsilon, c_{k}+\varepsilon\right), k=1, \cdots, n$, we have that

$$
\begin{aligned}
& U(P, f)=\sum_{k=1}^{n} M_{k} \cdot(2 \varepsilon)=2 \varepsilon \cdot \sum_{k=1}^{n} M_{k} \\
& L(P, f)=\sum_{k=1}^{n} m_{k} \cdot(2 \varepsilon)=2 \varepsilon \cdot \sum_{k=1}^{n} m_{k}
\end{aligned}
$$

where

$$
M_{k}=\max \left\{f\left(c_{k}\right), 0\right\}, \quad m_{k}=\min \left\{f\left(c_{k}\right), 0\right\}
$$

Thus,

$$
2 \varepsilon \cdot \sum_{k=1}^{n} m_{k} \leq \underline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} f \leq 2 \varepsilon \cdot \sum_{k=1}^{n} M_{k}
$$

Since ε can be made arbitrarily small, it follows that

$$
\underline{\int_{a}^{b}} f=\overline{\int_{a}^{b}} f=0 .
$$

This shows $f \in R[a, b]$ and $\int_{a}^{b} f=0$.

