
6.1#2 The proof is the same as that of Lemma 6.1.5, with mi replaced by Mi, and ‘≤’
replaced by ‘≥’. Note how to pass from Q = P ∪ {c} to general refinements of P .

6.1#8 Suppose P = {xk}nk=1. Note that, since

f(x) + g(x) ≤ sup
[xk−1,xk]

f + sup
[xk−1,xk]

g

for all x ∈ [xk−1, xk], we have

sup
[xk−1,xk]

(f + g) ≤ sup
[xk−1,xk]

f + sup
[xk−1,xk]

g.

In other words,
Mk(f + g) ≤Mk(f) + Mk(g).

Therefore

U(P, f + g) =
n∑

k=1

Mk(f + g)∆xk

≤
n∑

k=1

(
Mk(f) + Mk(g)

)
∆xk

=
n∑

k=1

Mk(f)∆xk +
n∑

k=1

Mk(g)∆xk

= U(P, f) + U(P, g).

This proves the inequality.

6.2#13 By assumption, f(x) = 0 except at finitely many points in [a, b], say at c1 < · · · < cn.
Without loss of generality, assume that a < c1 and cn < b (otherwise the proof is similar).
For sufficiently small ε > 0, let P be the partition

P = {a, c1 ± ε, · · · , cn ± ε, b}.

Since f takes value 0 outside of the intervals (ck − ε, ck + ε), k = 1, · · · , n, we have that

U(P, f) =
n∑

k=1

Mk · (2ε) = 2ε ·
n∑

k=1

Mk,

L(P, f) =
n∑

k=1

mk · (2ε) = 2ε ·
n∑

k=1

mk

where
Mk = max{f(ck), 0}, mk = min{f(ck), 0}.

Thus,

2ε ·
n∑

k=1

mk ≤
∫ b

a

f ≤
∫ b

a

f ≤ 2ε ·
n∑

k=1

Mk.



Since ε can be made arbitrarily small, it follows that∫ b

a

f =

∫ b

a

f = 0.

This shows f ∈ R[a, b] and
∫ b

a
f = 0.


