6.1#6 Let $P = \{x_k\}_{k=1}^n$ be any partition of [a, b]. For $k = 1, \dots, n$, we have, since $f(x) \ge 0$ for all $x \in [a, b]$,

$$m_k = \inf_{[x_{k-1}, x_k]} f \ge 0$$

It then follows that

$$L(P, f) = \sum_{k=1}^{n} m_k \Delta x_k \ge 0.$$

Since P is arbitrary, we get

$$\int_{\underline{a}}^{\underline{b}} f = \inf L(P, f) \ge 0.$$

This completes the proof.

6.3#5(a) The assumption $f \in R[a, b]$ implies that f is bounded. Therefore there exists M > 0 such that $f([a, b]) \subset [-M, M]$. Let g(x) = |x|. Then g is continuous on [-M, M]. So, by Theorem 6.3.4, $|f| = g \circ f \in R[a, b]$.

To prove $\left|\int_{a}^{b} f\right| \leq \int_{a}^{b} |f|$, notice that either $\int_{a}^{b} f \geq 0$ or $\int_{a}^{b} f < 0$. In the first case, we have

$$\left| \int_{a}^{b} f \right| = \int_{a}^{b} f \le \int_{a}^{b} |f|$$

where the last inequality follows from $f(x) \leq |f(x)|, \forall x \in [a, b]$ and Theorem 6.3.2. In the second case, we have

$$\left|\int_{a}^{b} f\right| = -\int_{a}^{b} f = \int_{a}^{b} (-f) \le \int_{a}^{b} |f|$$

where we have used Theorem 6.3.1(b) and $-f(x) \leq |f(x)|, \forall x \in [a, b]$. So, in both cases we have

$$\left|\int_{a}^{b} f\right| \leq \int_{a}^{b} |f|.$$

and the proof is complete.

6.3#9 Let h = g - f. Then by the assumption we have h(x) = 0 except for finitely many $x \in [a, b]$. By Exercise 6.2.13, this implies $h \in R[a, b]$ and

$$\int_{a}^{b} h = 0.$$

By Theorem 6.3.1(a), it follows that

$$g = f + h \in R[a, b]$$

and

$$\int_{a}^{b} g = \int_{a}^{b} (f+h) = \int_{a}^{b} f + \int_{a}^{b} h = \int_{a}^{b} f.$$

This proves the claims.