
6.1#6 Let P = {xk}nk=1 be any partition of [a, b]. For k = 1, · · · , n, we have, since f(x) ≥ 0
for all x ∈ [a, b],

mk = inf
[xk−1,xk]

f ≥ 0.

It then follows that

L(P, f) =
n∑

k=1

mk∆xk ≥ 0.

Since P is arbitrary, we get ∫ b

a

f = inf L(P, f) ≥ 0.

This completes the proof.

6.3#5(a) The assumption f ∈ R[a, b] implies that f is bounded. Therefore there exists
M > 0 such that f([a, b]) ⊂ [−M,M ]. Let g(x) = |x|. Then g is continuous on [−M,M ].
So, by Theorem 6.3.4, |f | = g ◦ f ∈ R[a, b].

To prove
∣∣∣∫ b

a
f
∣∣∣ ≤ ∫ b

a
|f |, notice that either

∫ b

a
f ≥ 0 or

∫ b

a
f < 0. In the first case, we have∣∣∣∣∫ b

a

f

∣∣∣∣ =

∫ b

a

f ≤
∫ b

a

|f |

where the last inequality follows from f(x) ≤ |f(x)|, ∀x ∈ [a, b] and Theorem 6.3.2. In the
second case, we have ∣∣∣∣∫ b

a

f

∣∣∣∣ = −
∫ b

a

f =

∫ b

a

(−f) ≤
∫ b

a

|f |

where we have used Theorem 6.3.1(b) and −f(x) ≤ |f(x)|, ∀x ∈ [a, b]. So, in both cases we
have ∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f |,

and the proof is complete.

6.3#9 Let h = g − f . Then by the assumption we have h(x) = 0 except for finitely many
x ∈ [a, b]. By Exercise 6.2.13, this implies h ∈ R[a, b] and∫ b

a

h = 0.

By Theorem 6.3.1(a), it follows that

g = f + h ∈ R[a, b]

and ∫ b

a

g =

∫ b

a

(f + h) =

∫ b

a

f +

∫ b

a

h =

∫ b

a

f.

This proves the claims.


