6.1\#6 Let $P=\left\{x_{k}\right\}_{k=1}^{n}$ be any partition of $[a, b]$. For $k=1, \cdots, n$, we have, since $f(x) \geq 0$ for all $x \in[a, b]$,

$$
m_{k}=\inf _{\left[x_{k-1}, x_{k}\right]} f \geq 0 .
$$

It then follows that

$$
L(P, f)=\sum_{k=1}^{n} m_{k} \Delta x_{k} \geq 0
$$

Since P is arbitrary, we get

$$
\underline{\int_{a}^{b}} f=\inf L(P, f) \geq 0
$$

This completes the proof.
6.3\#5(a) The assumption $f \in R[a, b]$ implies that f is bounded. Therefore there exists $M>0$ such that $f([a, b]) \subset[-M, M]$. Let $g(x)=|x|$. Then g is continuous on $[-M, M]$. So, by Theorem 6.3.4, $|f|=g \circ f \in R[a, b]$.
To prove $\left|\int_{a}^{b} f\right| \leq \int_{a}^{b}|f|$, notice that either $\int_{a}^{b} f \geq 0$ or $\int_{a}^{b} f<0$. In the first case, we have

$$
\left|\int_{a}^{b} f\right|=\int_{a}^{b} f \leq \int_{a}^{b}|f|
$$

where the last inequality follows from $f(x) \leq|f(x)|, \forall x \in[a, b]$ and Theorem 6.3.2. In the second case, we have

$$
\left|\int_{a}^{b} f\right|=-\int_{a}^{b} f=\int_{a}^{b}(-f) \leq \int_{a}^{b}|f|
$$

where we have used Theorem 6.3.1(b) and $-f(x) \leq|f(x)|, \forall x \in[a, b]$. So, in both cases we have

$$
\left|\int_{a}^{b} f\right| \leq \int_{a}^{b}|f|
$$

and the proof is complete.
6.3\#9 Let $h=g-f$. Then by the assumption we have $h(x)=0$ except for finitely many $x \in[a, b]$. By Exercise 6.2.13, this implies $h \in R[a, b]$ and

$$
\int_{a}^{b} h=0
$$

By Theorem 6.3.1(a), it follows that

$$
g=f+h \in R[a, b]
$$

and

$$
\int_{a}^{b} g=\int_{a}^{b}(f+h)=\int_{a}^{b} f+\int_{a}^{b} h=\int_{a}^{b} f
$$

This proves the claims.

