$\mathbf{2 . 1 \# 2 (d)}$ We show that the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to $1 / 2$. By definition, given any $\varepsilon>0$, we need to find an n^{*} such that

$$
\left|\frac{n}{2 n+\sqrt{n}}-\frac{1}{2}\right|<\varepsilon, \forall n \geq n^{*}
$$

Since

$$
\left|\frac{n}{2 n+\sqrt{n}}-\frac{1}{2}\right|=\left|\frac{-\sqrt{n}}{2(2 n+\sqrt{n})}\right|=\frac{1}{4 \sqrt{n}+2},
$$

the condition above is equivalent to

$$
\frac{1}{4 \sqrt{n}+2}<\varepsilon, \forall n \geq n^{*}
$$

Since

$$
\frac{1}{4 \sqrt{n}+2}<\frac{1}{4 \sqrt{n}}
$$

it suffices to have

$$
\frac{1}{4 \sqrt{n}}<\varepsilon, \forall n \geq n^{*}
$$

or equivalently,

$$
\frac{1}{(4 \varepsilon)^{2}}<n^{*}
$$

Thus choosing for instance

$$
n^{*}=\left\lceil\frac{1}{(4 \varepsilon)^{2}}\right\rceil+1
$$

would verify the definition of convergence. This completes the proof.
$\mathbf{2 . 1} \boldsymbol{\# 2}(\mathrm{g})$ We show that the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to 0 . By definition, given any $\varepsilon>0$, we need to find an n^{*} such that

$$
|(\sqrt{n+1}-\sqrt{n})-0|<\varepsilon, \forall n \geq n^{*}
$$

Since

$$
|(\sqrt{n+1}-\sqrt{n})-0|=\sqrt{n+1}-\sqrt{n}=(\sqrt{n+1}-\sqrt{n}) \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\sqrt{n+1}+\sqrt{n}}
$$

the condition above is equivalent to

$$
\frac{1}{\sqrt{n+1}+\sqrt{n}}<\varepsilon, \forall n \geq n^{*}
$$

Since

$$
\frac{1}{\sqrt{n+1}+\sqrt{n}}<\frac{1}{\sqrt{n}},
$$

it suffices to have

$$
\frac{1}{\sqrt{n}}<\varepsilon, \forall n \geq n^{*}
$$

or equivalently,

$$
\frac{1}{\varepsilon^{2}}<n^{*}
$$

Thus choosing for instance

$$
n^{*}=\left\lceil\frac{1}{\varepsilon^{2}}\right\rceil+1
$$

would verify the definition of convergence. This completes the proof.
2.1\#4 By definition, the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to 0 if and only if for any given $\varepsilon>0$, there exists an n^{*} such that

$$
\left|a_{n}-0\right|<\varepsilon, \forall n \geq n^{*}
$$

On the other hand, the sequence $\left\{\left|a_{n}\right|\right\}_{n=1}^{\infty}$ converges to 0 if and only if for any given $\varepsilon>0$, there exists an n^{*} such that

$$
\left|\left|a_{n}\right|-0\right|<\varepsilon, \forall n \geq n^{*}
$$

Since

$$
\left|a_{n}-0\right|=\left|a_{n}\right|=\left|\left|a_{n}\right|-0\right|,
$$

the two definitions actually coincide. Therefore the convergences of $\left\{a_{n}\right\}$ and $\left\{\left|a_{n}\right|\right\}$ to 0 are equivalent. This completes the proof.
2.1\#6 By definition, the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to A if and only if for any given $\varepsilon>0$, there exists an n^{*} such that

$$
\left|a_{n}-A\right|<\varepsilon, \forall n \geq n^{*}
$$

On the other hand, the sequence $\left\{a_{n}-A\right\}_{n=1}^{\infty}$ converges to 0 if and only if for any given $\varepsilon>0$, there exists an n^{*} such that

$$
\left|\left(a_{n}-A\right)-0\right|<\varepsilon, \forall n \geq n^{*}
$$

Since

$$
\left|\left(a_{n}-A\right)-0\right|=\left|a_{n}-A\right|,
$$

the two definitions actually coincide, and therefore the equivalence of the convergences. This completes the proof.

