$\mathbf{2 . 4 \# 1 5} \mathbf{( b )}$ First, the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is increasing. We show this by induction. Obviously, $a_{1}=1 \leq a_{2}=\sqrt{2}$. Suppose $a_{n} \leq a_{n+1}$ holds. Then by the recurrence relation we have

$$
a_{n+2}=\sqrt{1+a_{n+1}} \leq \sqrt{1+a_{n}}=a_{n+1} .
$$

By induction this shows $\left\{a_{n}\right\}_{n=1}^{\infty}$ is increasing.
Second, the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is bounded (from above). We show by induction that $a_{n} \leq 2, \forall n \geq 1$. This is obviously true for $a_{1}=1$. Suppose $a_{n} \leq 2$ holds. Then by the recurrence relation we have

$$
a_{n+1}=\sqrt{1+a_{n}} \leq \sqrt{1+2} \leq 2
$$

By induction this shows $\left\{a_{n}\right\}_{n=1}^{\infty}$ is bounded above by 2 .
Now by the monotone convergence theorem (Theorem 2.4.4), $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to a number, say $A$. Taking the limits (as $n \rightarrow \infty$ ) of both sides of the recursions relation

$$
a_{n+1}=\sqrt{1+a_{n}},
$$

we get

$$
A=\sqrt{1+A}
$$

Solving this yields $A=\frac{1 \pm \sqrt{5}}{2}$. Since $a_{n} \geq 1, \forall n \geq 1$, we have $A \geq 1$. Therefore $A \neq \frac{1-\sqrt{5}}{2}<0$. So we must have

$$
A=\frac{1+\sqrt{5}}{2} .
$$

Summarizing, we have shown that

$$
\lim _{n \rightarrow \infty} a_{n}=\frac{1+\sqrt{5}}{2} .
$$

2.5\#2 The fact that $A \geq 0$ follows from Theorem 2.2.1(f) with $a_{n}$ taken to be constantly 0 , and $b_{n}$ taken to be the $a_{n}$ in this problem. Now we show by definition that

$$
\lim _{n \rightarrow \infty} \sqrt{a_{n}}=\sqrt{A}
$$

Given $\varepsilon>0$, we need to find $n^{*}$ such that

$$
\left|\sqrt{a_{n}}-\sqrt{A}\right|<\varepsilon, \forall n \geq n^{*}
$$

Consider two different cases.
Case 1: $A=0$. In this case we can find $n^{*}$ such that

$$
\left|a_{n}-0\right|=a_{n}<\varepsilon^{2}, \forall n \geq n^{*}
$$

by the convergence of $\left\{a_{n}\right\}_{n=1}^{\infty}$. Taking the square roots of both sides, we get

$$
\sqrt{a_{n}}<\varepsilon, \forall n \geq n^{*},
$$

that is,

$$
\left|\sqrt{a_{n}}-\sqrt{A}\right|<\varepsilon, \forall n \geq n^{*}
$$

as desired.
Case 2: $A>0$. In this case we can write

$$
\sqrt{a_{n}}-\sqrt{A}=\left(\sqrt{a_{n}}-\sqrt{A}\right) \frac{\sqrt{a_{n}}+\sqrt{A}}{\sqrt{a_{n}}+\sqrt{A}}=\frac{a_{n}-A}{\sqrt{a_{n}}+\sqrt{A}}
$$

So

$$
\left|\sqrt{a_{n}}-\sqrt{A}\right|=\frac{\left|a_{n}-A\right|}{\sqrt{a_{n}}+\sqrt{A}} \leq \frac{\left|a_{n}-A\right|}{\sqrt{A}} .
$$

By the convergence of $\left\{a_{n}\right\}_{n=1}^{\infty}$, there exists $n^{*}$ such that

$$
\left|a_{n}-A\right|<\varepsilon \sqrt{A}, \forall n \geq n^{*} .
$$

Consequently, we have

$$
\left|\sqrt{a_{n}}-\sqrt{A}\right| \leq \frac{\left|a_{n}-A\right|}{\sqrt{A}}<\varepsilon, \forall n \geq n^{*}
$$

as desired.
2.5\#3 Given $\varepsilon>0$, we need to find $n^{*}$ such that

$$
b_{n}=\sup \left\{\left|a_{m}-a_{n}\right|: m \geq n\right\}<\varepsilon, \forall n \geq n^{*} .
$$

Since $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence. By definition, there exists $n^{*}$ such that

$$
\left|a_{n}-a_{m}\right|<\varepsilon / 2, \forall m \geq n \geq n^{*} .
$$

Therefore for any fixed $n \geq n^{*}, \varepsilon / 2$ is an upper bound for the set

$$
\left\{\left|a_{m}-a_{n}\right|: m \geq n\right\} .
$$

It follows that the least upper bound

$$
\sup \left\{\left|a_{m}-a_{n}\right|: m \geq n\right\} \leq \varepsilon / 2
$$

This shows

$$
b_{n} \leq \varepsilon / 2<\varepsilon, \forall n \geq n^{*}
$$

By definition, $\left\{b_{n}\right\}_{n=1}^{\infty}$ converges to 0 .

