
2.4#15(b) First, the sequence {an}∞n=1 is increasing. We show this by induction. Obviously,
a1 = 1 ≤ a2 =

√
2. Suppose an ≤ an+1 holds. Then by the recurrence relation we have

an+2 =
√

1 + an+1 ≤
√

1 + an = an+1.

By induction this shows {an}∞n=1 is increasing.
Second, the sequence {an}∞n=1 is bounded (from above). We show by induction that

an ≤ 2,∀n ≥ 1. This is obviously true for a1 = 1. Suppose an ≤ 2 holds. Then by the
recurrence relation we have

an+1 =
√

1 + an ≤
√

1 + 2 ≤ 2.

By induction this shows {an}∞n=1 is bounded above by 2.
Now by the monotone convergence theorem (Theorem 2.4.4), {an}∞n=1 converges to a

number, say A. Taking the limits (as n→∞) of both sides of the recursions relation

an+1 =
√

1 + an,

we get
A =

√
1 + A.

Solving this yields A = 1±
√
5

2
. Since an ≥ 1, ∀n ≥ 1, we have A ≥ 1. Therefore A 6= 1−

√
5

2
< 0.

So we must have

A =
1 +
√

5

2
.

Summarizing, we have shown that

lim
n→∞

an =
1 +
√

5

2
.

2.5#2 The fact that A ≥ 0 follows from Theorem 2.2.1(f) with an taken to be constantly
0, and bn taken to be the an in this problem. Now we show by definition that

lim
n→∞

√
an =

√
A.

Given ε > 0, we need to find n∗ such that

|
√
an −

√
A| < ε, ∀n ≥ n∗.

Consider two different cases.
Case 1: A = 0. In this case we can find n∗ such that

|an − 0| = an < ε2, ∀n ≥ n∗

by the convergence of {an}∞n=1. Taking the square roots of both sides, we get

√
an < ε, ∀n ≥ n∗,



that is,
|
√
an −

√
A| < ε, ∀n ≥ n∗,

as desired.
Case 2: A > 0. In this case we can write

√
an −

√
A = (

√
an −

√
A)

√
an +

√
A

√
an +

√
A

=
an − A
√
an +

√
A
.

So

|
√
an −

√
A| = |an − A|

√
an +

√
A
≤ |an − A|√

A
.

By the convergence of {an}∞n=1, there exists n∗ such that

|an − A| < ε
√
A, ∀n ≥ n∗.

Consequently, we have

|
√
an −

√
A| ≤ |an − A|√

A
< ε, ∀n ≥ n∗,

as desired.

2.5#3 Given ε > 0, we need to find n∗ such that

bn = sup{|am − an| : m ≥ n} < ε, ∀n ≥ n∗.

Since {an}∞n=1 is a Cauchy sequence. By definition, there exists n∗ such that

|an − am| < ε/2, ∀m ≥ n ≥ n∗.

Therefore for any fixed n ≥ n∗, ε/2 is an upper bound for the set

{|am − an| : m ≥ n}.

It follows that the least upper bound

sup{|am − an| : m ≥ n} ≤ ε/2.

This shows
bn ≤ ε/2 < ε, ∀n ≥ n∗.

By definition, {bn}∞n=1 converges to 0.


