2.6\#1 (a) $\left\{b_{n}\right\}$ is a subsequence of $\left\{a_{n}\right\}$, since $b_{n}=a_{2 n+1}$.
(b) $\left\{b_{n}\right\}$ is not a subsequence of $\left\{a_{n}\right\}$, since $b_{2}=1 / \sqrt{2}$ is not equal to any of the a_{n} 's.
(c) $\left\{b_{n}\right\}$ is not a subsequence of $\left\{a_{n}\right\}$, since $b_{1}=1 / 3$ is not equal to any of the a_{n} 's.
2.8\#43 Assume for a contradiction that $\left\{a_{n}+b_{n}\right\}$ converges, say

$$
\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=C
$$

for some number C. We also know that $\left\{a_{n}\right\}$ converges, say

$$
\lim _{n \rightarrow \infty} a_{n}=A
$$

By Theorem 2.2.1(a), we then have

$$
\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty}\left\{\left(a_{n}+b_{n}\right)-a_{n}\right\}=C-A .
$$

This contradicts the assumption that $\left\{b_{n}\right\}$ diverges. Thus $\left\{a_{n}+b_{n}\right\}$ must diverge.
3.1\#5(a) We claim that

$$
\lim _{x \rightarrow \infty} \frac{-x^{2}}{2 x^{2}-3}=\frac{-1}{2}
$$

By definition, for any $\varepsilon>0$, we need to find $M>0$ such that

$$
\left|\frac{-x^{2}}{2 x^{2}-3}-\frac{-1}{2}\right|<\varepsilon, \forall x \geq M
$$

However, we have

$$
\frac{-x^{2}}{2 x^{2}-3}-\frac{-1}{2}=\frac{-x^{2}}{2 x^{2}-3}+\frac{1}{2}=\frac{-3}{2\left(2 x^{2}-3\right)} .
$$

So if $2 x^{2}-3>0$, or $x>\sqrt{3 / 2}$, we have

$$
\left|\frac{-x^{2}}{2 x^{2}-3}-\frac{-1}{2}\right|=\frac{3}{2\left(2 x^{2}-3\right)} .
$$

If $x \geq M>\sqrt{3 / 2}$, then we can bound this by

$$
\frac{3}{2\left(2 x^{2}-3\right)} \leq \frac{3}{2\left(2 M^{2}-3\right)}
$$

If we set

$$
M=\sqrt{\frac{\frac{3}{2 \varepsilon}+3}{2}}>\sqrt{3 / 2}
$$

then

$$
\frac{3}{2\left(2 M^{2}-3\right)}=\varepsilon
$$

Summarizing, for all $x \geq M$, we obtain that

$$
\left|\frac{-x^{2}}{2 x^{2}-3}-\frac{-1}{2}\right|<\varepsilon .
$$

Since $\varepsilon>0$ was arbitrary, this completes the proof of the claim.
3.1\#5(f) We claim that

$$
\lim _{x \rightarrow \infty} \cos (x)
$$

does not exist. Indeed, by Theorem 3.1.6, if the limit exists, say equals L, then we would have

$$
\lim _{n \rightarrow \infty} \cos \left(x_{n}\right)=L
$$

for any sequence $\left\{x_{n}\right\}$ with

$$
\lim _{n \rightarrow \infty} x_{n}=\infty
$$

However, if $x_{n}=2 \pi n$, we get

$$
\lim _{n \rightarrow \infty} \cos \left(x_{n}\right)=\lim _{n \rightarrow \infty} \cos (2 \pi n)=1
$$

On the other hand, if $x_{n}=2 \pi n+\pi$, we get

$$
\lim _{n \rightarrow \infty} \cos \left(x_{n}\right)=\lim _{n \rightarrow \infty} \cos (2 \pi n+\pi)=-1
$$

Thus $L=1=-1$, which is a impossible.

