3.1\#12 Given $\varepsilon>0$, we need to find $M>a$ such that

$$
|f(g(x))-L|<\varepsilon, \forall x \geq M
$$

By the assumption that $\lim _{y \rightarrow \infty} f(y)=L$, there exists $K>a$ such that

$$
|f(y)-L|<\varepsilon, \forall y \geq K
$$

Therefore if $y=g(x) \geq K$, we would have

$$
|f(g(x))-L|<\varepsilon
$$

On the other hand, by the assumption that $\lim _{x \rightarrow \infty} g(x)=\infty$, for this K there exists $M>a$ such that

$$
g(x) \geq K, \forall x \geq M
$$

So, combining the above, we see that

$$
|f(g(x))-L|<\varepsilon
$$

as long as $x \geq M$. This completes the proof.
3.2\#1(d) We prove that

$$
\lim _{x \rightarrow 0} \frac{x^{2}}{|x|}=0
$$

By definition, given $\varepsilon>0$, we need to find $\delta>0$ such that

$$
\left|\frac{x^{2}}{|x|}-0\right|<\varepsilon, \forall x \text { with } 0<|x-0|<\delta
$$

that is,

$$
\frac{x^{2}}{|x|}<\varepsilon, \forall x \text { with } 0<|x|<\delta
$$

Notice that

$$
\frac{x^{2}}{|x|}=\frac{|x|^{2}}{|x|}=|x| .
$$

So, choosing $\delta=\varepsilon$ gives that

$$
\frac{x^{2}}{|x|}=|x|<\varepsilon, \quad \text { whenever } 0<|x|<\delta .
$$

This completes the proof.
3.2\#5 (a) The example

$$
1=\lim _{x \rightarrow 0}|x| \cdot \frac{1}{|x|} \stackrel{?}{=}\left(\lim _{x \rightarrow 0}|x|\right)\left(\lim _{x \rightarrow 0} \frac{1}{|x|}\right)=0 \cdot \text { (anything) }
$$

shows that " $0 \cdot$ (anything)" is not necessarily 0 .
(b) We show that

$$
\lim _{x \rightarrow 0} x \cdot \sin \left(\frac{1}{x}\right)=0
$$

Notice that

$$
-1 \leq \sin \left(\frac{1}{x}\right) \leq 1, \forall x \neq 0
$$

Multiplying both sides by $|x|>0$, we get

$$
-|x| \leq x \cdot \sin \left(\frac{1}{x}\right) \leq|x|, \quad \forall x \neq 0
$$

Since

$$
\lim _{x \rightarrow 0}(-|x|)=0=\lim _{x \rightarrow 0}|x|,
$$

by the squeeze theorem, we can conclude

$$
\lim _{x \rightarrow 0} x \cdot \sin \left(\frac{1}{x}\right)=0
$$

as desired.

