
3.1#12 Given ε > 0, we need to find M > a such that

|f(g(x))− L| < ε, ∀x ≥M.

By the assumption that limy→∞ f(y) = L, there exists K > a such that

|f(y)− L| < ε, ∀y ≥ K.

Therefore if y = g(x) ≥ K, we would have

|f(g(x))− L| < ε.

On the other hand, by the assumption that limx→∞ g(x) =∞, for this K there exists M > a
such that

g(x) ≥ K, ∀x ≥M.

So, combining the above, we see that

|f(g(x))− L| < ε

as long as x ≥M . This completes the proof.

3.2#1(d) We prove that

lim
x→0

x2

|x|
= 0.

By definition, given ε > 0, we need to find δ > 0 such that∣∣∣∣ x2|x| − 0

∣∣∣∣ < ε, ∀x with 0 < |x− 0| < δ,

that is,
x2

|x|
< ε, ∀x with 0 < |x| < δ.

Notice that
x2

|x|
=
|x|2

|x|
= |x|.

So, choosing δ = ε gives that

x2

|x|
= |x| < ε, whenever 0 < |x| < δ.

This completes the proof.

3.2#5 (a) The example

1 = lim
x→0
|x| · 1

|x|
?
=

(
lim
x→0
|x|

)(
lim
x→0

1

|x|

)
= 0 · (anything)



shows that “0 · (anything)” is not necessarily 0.
(b) We show that

lim
x→0

x · sin
(

1

x

)
= 0.

Notice that

−1 ≤ sin

(
1

x

)
≤ 1, ∀x 6= 0.

Multiplying both sides by |x| > 0, we get

−|x| ≤ x · sin
(

1

x

)
≤ |x|, ∀x 6= 0.

Since
lim
x→0

(−|x|) = 0 = lim
x→0
|x|,

by the squeeze theorem, we can conclude

lim
x→0

x · sin
(

1

x

)
= 0,

as desired.


