#1 (a) By definition, f is continuous at x = 0 if and only if for any € > 0, there exists § > 0
such that
|f(z) = f(0)| < e whenever |z — 0] = |z| < 0.

(b) Applying the definition in (a) with ¢ = %, we find 0 > 0 such that

1
|f(x) = 1| < 5 whenever |z| < 0.

Since ] ] .
—1ll<=- = —=K —1<-=
Fw) =11 < 5 S < @) -1< 3,
we get, in particular,
1
> —.
fla) >
This shows ]
f(z) > 3 whenever |z| < 6,
as desired.

#2 (a) Suppose to the contrary that there exists = € [0,1] such that f(z) <0. If f(z) <0,
then we must have x > 0 since it is assumed that f(0) > 0. Applying the Intermediate Value
Theorem to the interval [0, x], we see that, since f is continuous on [0, z] and has different
signs at the endpoints, there must exist ¢ € (0,z) such that f(¢) = 0. But this contradicts
the assumption that f never equals 0 on [0, 1]. If f(z) = 0, then we get a contradiction as
well. Therefore we must have f(z) > 0 for all z € [0,1].

(b) By the Extreme Value Theorem, since f is continuous on [0, 1], it attains its minimum
on [0, 1], i.e. there exists ¢ € [0, 1] such that

min f(z) = f(c)

z€[0,1]

On the other hand, by (a), for this ¢ we have

f(e) > 0.

So if we let

e = min f(@),

then it holds € > 0 and
f(x) > ¢ for all x € [0,1].

This proves (b).

#3 (a) By definition, f is uniformly continuous on [0, 1] if and only if for any € > 0, there
exists 0 > 0 such that

|f(z) — f(y)| < e whenever x,y € [0,1] and |z — y| < 4.



b) Suppose f is 1-Holder continuous on [0, 1]. Then for any given € > 0, we have
2

1f(x) = f(y)] < Clz —y|'? < ¢

provided that z,y € [0, 1] and

C’m - y’1/2 <ég,
or equivalently,
N2
— <= .
|z -yl ( C)
Therefore, choosing
2
0= (%) > 0,

we have
|f(z) — f(y)| < e whenever x,y € [0,1] and |z — y| < 4.

This shows f is uniformly continuous on [0, 1].
#4 (a) By definition,

z—0 x—0
(b) By (a), since f(0) =0, we have

f(0) = lim @) = lim M = lim x sin (i)

x—0 x—0 €T x—0 1‘2

Since

1
—1 <sin <—2> <1, Vx #0,
x

we have |
—|z| < xsin (—2> < |z|, Yz # 0.
x

Therefore, by the Squeeze Theorem,

f(0) = lim z sin (i) =0.

x—0 9;'2

#5 See Theorem 5.2.1(b), in which may take D to be any open interval containing = = a.

#6 (a) See Theorem 5.3.3.

(b) Let z,y € (a,b), x # y. We are going to show that f(z) # f(y). Without loss of
generality, we may assume z < y. Since f is differentiable on (a,b), it follows that f is
continuous on [z,y| and differentiable on (z,y). By the Mean Value Theorem, there exists
¢ € (z,y) such that



or equivalently,

f@) = fly) = ) —y).
However, by the assumption we have f’(¢) # 0. Therefore, f(z) — f(y) # 0, and so
f(x) # f(y). This proves (b).

#7 (a) Since f is a polynomial, the function F'(z) is differentiable on (—o0, c0). In particular,
it is continuous on [0, 1] and differentiable on (0,1). Moreover, we have

F(0) = f(0)+ f(0) + £(1), F(1) = f(1).
By assumption, f(0) =0, f/(0) = 0. So we have
F(0) = F(1) = f(1).
It now follows from Rolle’s theorem that there exists ¢ € (0, 1) such that
F'(c) = 0.
(b) By direct computation, we have
F(z) = f'(z)(1 =) = 2f(1)(1 = 2).
Therefore, with ¢ € (0,1) as in (a), we have
F'(c) = f"(e)(1 = ¢) = 2f(1)(1 =) = 0.

However, this implies
f(e)1 =) =2f(1)(1 —c),
or, since 1 — ¢ # 0,

fe) =2f(1).

From this we obtain

as desired.

#8 (a) By inspection, we have (why?)

nt2 if p is even
UP,, f)=< > ’
(Fn, /) {"Q—J;l if n is odd,
and
% if n is even,
L(P, [) =197, .
= if nis odd.
(b) Notice that for n =1,2,--- , we have

L(Py 1) < L f< ff <U(P,. f).



On the other hand, it follows from (a) that (why?)

lim U(P,, f) = lim L(P,, f) = 5

n—oo

So, by the Squeeze Theorem, it must hold that

/Llf:/;f:%

This shows f € R[a,b] and moreover
1
1
=3
f7-

#9 See Theorem 6.2.2.
#10 (a) We will show that S
b b
Lfﬁlg
Since ¢ is assumed to be Riemann integrable, it will then follow that

<o (-[s)

To show the first inequality, let P = {z}}}_; be any given partition of the interval [a,b]. By

assumption, f(x) < g(z), Vx € [a,b]. So, for k =1,--- ,n, we have
Mip(f)= sup [f< sup g=Mg),
[zr—1,2k] [Tr—1,7k]

and therefore

UP, f) =Y My(f)Az, <> My(g)Azp = U(P,g).

k=1 k=1

From this we obtain, since f_abf <U(P,f),

[r<v

Since P is arbitrary and f_abg = infp U(P, g), this implies

ZZSZZ



the claimed inequality.
(b) If f(z) >0, Vzx € [a,b]. Then by Exercise 6.1.6,

/:fzo.
OS/abeZfﬁ/abgz(J,

where we have used (a) in the last inequality. However, this implies

Lbf:ff:o.

Therefore, under the assumptions, we must have f € R[a,b] and

/abf:O.

#11 See Theorem 6.4.2. Understand the precise meaning of the assumptions on f and f’.

So, if fabg =0,

This proves (b).



