\#1 (a) By definition, f is continuous at $x=0$ if and only if for any $\varepsilon>0$, there exists $\delta>0$ such that

$$
|f(x)-f(0)|<\varepsilon \text { whenever }|x-0|=|x|<\delta .
$$

(b) Applying the definition in (a) with $\varepsilon=\frac{1}{2}$, we find $\delta>0$ such that

$$
|f(x)-1|<\frac{1}{2} \text { whenever }|x|<\delta
$$

Since

$$
|f(x)-1|<\frac{1}{2} \quad \Longleftrightarrow \quad-\frac{1}{2}<f(x)-1<\frac{1}{2},
$$

we get, in particular,

$$
f(x)>\frac{1}{2} .
$$

This shows

$$
f(x)>\frac{1}{2} \text { whenever }|x|<\delta,
$$

as desired.
\#2 (a) Suppose to the contrary that there exists $x \in[0,1]$ such that $f(x) \leq 0$. If $f(x)<0$, then we must have $x>0$ since it is assumed that $f(0)>0$. Applying the Intermediate Value Theorem to the interval $[0, x]$, we see that, since f is continuous on $[0, x]$ and has different signs at the endpoints, there must exist $c \in(0, x)$ such that $f(c)=0$. But this contradicts the assumption that f never equals 0 on $[0,1]$. If $f(x)=0$, then we get a contradiction as well. Therefore we must have $f(x)>0$ for all $x \in[0,1]$.
(b) By the Extreme Value Theorem, since f is continuous on $[0,1]$, it attains its minimum on $[0,1]$, i.e. there exists $c \in[0,1]$ such that

$$
\min _{x \in[0,1]} f(x)=f(c)
$$

On the other hand, by (a), for this c we have

$$
f(c)>0 .
$$

So if we let

$$
\varepsilon=\min _{x \in[0,1]} f(x),
$$

then it holds $\varepsilon>0$ and

$$
f(x) \geq \varepsilon \text { for all } x \in[0,1] .
$$

This proves (b).
\#3 (a) By definition, f is uniformly continuous on $[0,1]$ if and only if for any $\varepsilon>0$, there exists $\delta>0$ such that

$$
|f(x)-f(y)|<\varepsilon \text { whenever } x, y \in[0,1] \text { and }|x-y|<\delta .
$$

(b) Suppose f is $\frac{1}{2}$-Hölder continuous on $[0,1]$. Then for any given $\varepsilon>0$, we have

$$
|f(x)-f(y)| \leq C|x-y|^{1 / 2}<\varepsilon
$$

provided that $x, y \in[0,1]$ and

$$
C|x-y|^{1 / 2}<\varepsilon
$$

or equivalently,

$$
|x-y|<\left(\frac{\varepsilon}{C}\right)^{2}
$$

Therefore, choosing

$$
\delta=\left(\frac{\varepsilon}{C}\right)^{2}>0
$$

we have

$$
|f(x)-f(y)|<\varepsilon \text { whenever } x, y \in[0,1] \text { and }|x-y|<\delta
$$

This shows f is uniformly continuous on $[0,1]$.
\#4 (a) By definition,

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}
$$

(b) By (a), since $f(0)=0$, we have

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)}{x}=\lim _{x \rightarrow 0} \frac{x^{2} \sin \left(\frac{1}{x^{2}}\right)}{x}=\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x^{2}}\right) .
$$

Since

$$
-1 \leq \sin \left(\frac{1}{x^{2}}\right) \leq 1, \forall x \neq 0
$$

we have

$$
-|x| \leq x \sin \left(\frac{1}{x^{2}}\right) \leq|x|, \forall x \neq 0
$$

Therefore, by the Squeeze Theorem,

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x^{2}}\right)=0
$$

\#5 See Theorem 5.2.1(b), in which may take D to be any open interval containing $x=a$.
\#6 (a) See Theorem 5.3.3.
(b) Let $x, y \in(a, b), x \neq y$. We are going to show that $f(x) \neq f(y)$. Without loss of generality, we may assume $x<y$. Since f is differentiable on (a, b), it follows that f is continuous on $[x, y]$ and differentiable on (x, y). By the Mean Value Theorem, there exists $c \in(x, y)$ such that

$$
\frac{f(x)-f(y)}{x-y}=f^{\prime}(c)
$$

or equivalently,

$$
f(x)-f(y)=f^{\prime}(c)(x-y) .
$$

However, by the assumption we have $f^{\prime}(c) \neq 0$. Therefore, $f(x)-f(y) \neq 0$, and so $f(x) \neq f(y)$. This proves (b).
\#7 (a) Since f is a polynomial, the function $F(x)$ is differentiable on $(-\infty, \infty)$. In particular, it is continuous on $[0,1]$ and differentiable on $(0,1)$. Moreover, we have

$$
F(0)=f(0)+f^{\prime}(0)+f(1), \quad F(1)=f(1) .
$$

By assumption, $f(0)=0, f^{\prime}(0)=0$. So we have

$$
F(0)=F(1)=f(1) .
$$

It now follows from Rolle's theorem that there exists $c \in(0,1)$ such that

$$
F^{\prime}(c)=0 .
$$

(b) By direct computation, we have

$$
F^{\prime}(x)=f^{\prime \prime}(x)(1-x)-2 f(1)(1-x) .
$$

Therefore, with $c \in(0,1)$ as in (a), we have

$$
F^{\prime}(c)=f^{\prime \prime}(c)(1-c)-2 f(1)(1-c)=0 .
$$

However, this implies

$$
f^{\prime \prime}(c)(1-c)=2 f(1)(1-c),
$$

or, since $1-c \neq 0$,

$$
f^{\prime \prime}(c)=2 f(1) .
$$

From this we obtain

$$
f(1)=\frac{f^{\prime \prime}(c)}{2},
$$

as desired.
\#8 (a) By inspection, we have (why?)

$$
U\left(P_{n}, f\right)= \begin{cases}\frac{n+2}{2 n} & \text { if } n \text { is even } \\ \frac{n+1}{2 n} & \text { if } n \text { is odd }\end{cases}
$$

and

$$
L\left(P_{n}, f\right)= \begin{cases}\frac{1}{2} & \text { if } n \text { is even } \\ \frac{n-1}{2 n} & \text { if } n \text { is odd }\end{cases}
$$

(b) Notice that for $n=1,2, \cdots$, we have

$$
L\left(P_{n}, f\right) \leq \underline{\int_{0}^{1}} f \leq \overline{\int_{0}^{1}} f \leq U\left(P_{n}, f\right)
$$

On the other hand, it follows from (a) that (why?)

$$
\lim _{n \rightarrow \infty} U\left(P_{n}, f\right)=\lim _{n \rightarrow \infty} L\left(P_{n}, f\right)=\frac{1}{2}
$$

So, by the Squeeze Theorem, it must hold that

$$
\underline{\int_{0}^{1}} f=\overline{\int_{0}^{1}} f=\frac{1}{2} .
$$

This shows $f \in R[a, b]$ and moreover

$$
\int_{0}^{1} f=\frac{1}{2} .
$$

\#9 See Theorem 6.2.2.
\#10 (a) We will show that

$$
\overline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} g
$$

Since g is assumed to be Riemann integrable, it will then follow that

$$
\overline{\int_{a}^{b}} f \leq \int_{a}^{b} g\left(=\overline{\int_{a}^{b}} g\right) .
$$

To show the first inequality, let $P=\left\{x_{k}\right\}_{k=1}^{n}$ be any given partition of the interval $[a, b]$. By assumption, $f(x) \leq g(x), \forall x \in[a, b]$. So, for $k=1, \cdots, n$, we have

$$
M_{k}(f)=\sup _{\left[x_{k-1}, x_{k}\right]} f \leq \sup _{\left[x_{k-1}, x_{k}\right]} g=M_{k}(g),
$$

and therefore

$$
U(P, f)=\sum_{k=1}^{n} M_{k}(f) \Delta x_{k} \leq \sum_{k=1}^{n} M_{k}(g) \Delta x_{k}=U(P, g) .
$$

From this we obtain, since $\overline{\int_{a}^{b}} f \leq U(P, f)$,

$$
\overline{\int_{a}^{b}} f \leq U(P, g)
$$

Since P is arbitrary and $\overline{\int_{a}^{b}} g=\inf _{P} U(P, g)$, this implies

$$
\overline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} g
$$

the claimed inequality.
(b) If $f(x) \geq 0, \forall x \in[a, b]$. Then by Exercise 6.1.6,

$$
\underline{\int_{a}^{b}} f \geq 0
$$

So, if $\int_{a}^{b} g=0$,

$$
0 \leq \underline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} f \leq \int_{a}^{b} g=0
$$

where we have used (a) in the last inequality. However, this implies

$$
\underline{\int_{a}^{b}} f=\overline{\int_{a}^{b}} f=0 .
$$

Therefore, under the assumptions, we must have $f \in R[a, b]$ and

$$
\int_{a}^{b} f=0
$$

This proves (b).
\#11 See Theorem 6.4.2. Understand the precise meaning of the assumptions on f and f^{\prime}.

