
#1 (a) By definition, f is continuous at x = 0 if and only if for any ε > 0, there exists δ > 0
such that

|f(x)− f(0)| < ε whenever |x− 0| = |x| < δ.

(b) Applying the definition in (a) with ε = 1
2
, we find δ > 0 such that

|f(x)− 1| < 1

2
whenever |x| < δ.

Since

|f(x)− 1| < 1

2
⇐⇒ −1

2
< f(x)− 1 <

1

2
,

we get, in particular,

f(x) >
1

2
.

This shows

f(x) >
1

2
whenever |x| < δ,

as desired.

#2 (a) Suppose to the contrary that there exists x ∈ [0, 1] such that f(x) ≤ 0. If f(x) < 0,
then we must have x > 0 since it is assumed that f(0) > 0. Applying the Intermediate Value
Theorem to the interval [0, x], we see that, since f is continuous on [0, x] and has different
signs at the endpoints, there must exist c ∈ (0, x) such that f(c) = 0. But this contradicts
the assumption that f never equals 0 on [0, 1]. If f(x) = 0, then we get a contradiction as
well. Therefore we must have f(x) > 0 for all x ∈ [0, 1].
(b) By the Extreme Value Theorem, since f is continuous on [0, 1], it attains its minimum
on [0, 1], i.e. there exists c ∈ [0, 1] such that

min
x∈[0,1]

f(x) = f(c)

On the other hand, by (a), for this c we have

f(c) > 0.

So if we let
ε = min

x∈[0,1]
f(x),

then it holds ε > 0 and
f(x) ≥ ε for all x ∈ [0, 1].

This proves (b).

#3 (a) By definition, f is uniformly continuous on [0, 1] if and only if for any ε > 0, there
exists δ > 0 such that

|f(x)− f(y)| < ε whenever x, y ∈ [0, 1] and |x− y| < δ.



(b) Suppose f is 1
2
-Hölder continuous on [0, 1]. Then for any given ε > 0, we have

|f(x)− f(y)| ≤ C|x− y|1/2 < ε

provided that x, y ∈ [0, 1] and
C|x− y|1/2 < ε,

or equivalently,

|x− y| <
( ε
C

)2
.

Therefore, choosing

δ =
( ε
C

)2
> 0,

we have
|f(x)− f(y)| < ε whenever x, y ∈ [0, 1] and |x− y| < δ.

This shows f is uniformly continuous on [0, 1].

#4 (a) By definition,

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
.

(b) By (a), since f(0) = 0, we have

f ′(0) = lim
x→0

f(x)

x
= lim

x→0

x2 sin
(

1
x2

)
x

= lim
x→0

x sin

(
1

x2

)
.

Since

−1 ≤ sin

(
1

x2

)
≤ 1, ∀x 6= 0,

we have

−|x| ≤ x sin

(
1

x2

)
≤ |x|, ∀x 6= 0.

Therefore, by the Squeeze Theorem,

f ′(0) = lim
x→0

x sin

(
1

x2

)
= 0.

#5 See Theorem 5.2.1(b), in which may take D to be any open interval containing x = a.

#6 (a) See Theorem 5.3.3.
(b) Let x, y ∈ (a, b), x 6= y. We are going to show that f(x) 6= f(y). Without loss of
generality, we may assume x < y. Since f is differentiable on (a, b), it follows that f is
continuous on [x, y] and differentiable on (x, y). By the Mean Value Theorem, there exists
c ∈ (x, y) such that

f(x)− f(y)

x− y
= f ′(c),



or equivalently,
f(x)− f(y) = f ′(c)(x− y).

However, by the assumption we have f ′(c) 6= 0. Therefore, f(x) − f(y) 6= 0, and so
f(x) 6= f(y). This proves (b).

#7 (a) Since f is a polynomial, the function F (x) is differentiable on (−∞,∞). In particular,
it is continuous on [0, 1] and differentiable on (0, 1). Moreover, we have

F (0) = f(0) + f ′(0) + f(1), F (1) = f(1).

By assumption, f(0) = 0, f ′(0) = 0. So we have

F (0) = F (1) = f(1).

It now follows from Rolle’s theorem that there exists c ∈ (0, 1) such that

F ′(c) = 0.

(b) By direct computation, we have

F ′(x) = f ′′(x)(1− x)− 2f(1)(1− x).

Therefore, with c ∈ (0, 1) as in (a), we have

F ′(c) = f ′′(c)(1− c)− 2f(1)(1− c) = 0.

However, this implies
f ′′(c)(1− c) = 2f(1)(1− c),

or, since 1− c 6= 0,
f ′′(c) = 2f(1).

From this we obtain

f(1) =
f ′′(c)

2
,

as desired.

#8 (a) By inspection, we have (why?)

U(Pn, f) =

{
n+2
2n

if n is even,
n+1
2n

if n is odd,

and

L(Pn, f) =

{
1
2

if n is even,
n−1
2n

if n is odd.

(b) Notice that for n = 1, 2, · · · , we have

L(Pn, f) ≤
∫ 1

0

f ≤
∫ 1

0

f ≤ U(Pn, f).



On the other hand, it follows from (a) that (why?)

lim
n→∞

U(Pn, f) = lim
n→∞

L(Pn, f) =
1

2
.

So, by the Squeeze Theorem, it must hold that∫ 1

0

f =

∫ 1

0

f =
1

2
.

This shows f ∈ R[a, b] and moreover ∫ 1

0

f =
1

2
.

#9 See Theorem 6.2.2.

#10 (a) We will show that ∫ b

a

f ≤
∫ b

a

g.

Since g is assumed to be Riemann integrable, it will then follow that∫ b

a

f ≤
∫ b

a

g

(
=

∫ b

a

g

)
.

To show the first inequality, let P = {xk}nk=1 be any given partition of the interval [a, b]. By
assumption, f(x) ≤ g(x), ∀x ∈ [a, b]. So, for k = 1, · · · , n, we have

Mk(f) = sup
[xk−1,xk]

f ≤ sup
[xk−1,xk]

g = Mk(g),

and therefore

U(P, f) =
n∑

k=1

Mk(f)∆xk ≤
n∑

k=1

Mk(g)∆xk = U(P, g).

From this we obtain, since
∫ b

a
f ≤ U(P, f),∫ b

a

f ≤ U(P, g).

Since P is arbitrary and
∫ b

a
g = infP U(P, g), this implies∫ b

a

f ≤
∫ b

a

g,



the claimed inequality.
(b) If f(x) ≥ 0, ∀x ∈ [a, b]. Then by Exercise 6.1.6,∫ b

a

f ≥ 0.

So, if
∫ b

a
g = 0,

0 ≤
∫ b

a

f ≤
∫ b

a

f ≤
∫ b

a

g = 0,

where we have used (a) in the last inequality. However, this implies∫ b

a

f =

∫ b

a

f = 0.

Therefore, under the assumptions, we must have f ∈ R[a, b] and∫ b

a

f = 0.

This proves (b).

#11 See Theorem 6.4.2. Understand the precise meaning of the assumptions on f and f ′.


