- 1. maximum value = 27, attained at x = 2minimum value = -1, attained at x = 0
- **2.** (a) increasing on [0, 2]decreasing on $(-\infty, 0]$ and $[2, \infty)$ local minimum at (x, y) = (0, 2)local maximum at (x, y) = (2, 6)
 - (b) concave up on $(-\infty, 1]$ concave down on $[1, \infty)$ inflection point at (x, y) = (1, 4)
 - (c)

- 3. minimum cost = \$270, attained when the dimensions are $3m \times 6m \times \frac{10}{9}m$.
- **4.** $s(t) = t^5 2t^3 + t$
- **5.** (a) 28/15
 - (b) 10
 - (c) 0
 - (d) $-\frac{1}{2}e^{-t^2} + C$ (e) $\ln(\ln s) + C$