1. maximum value $=27$, attained at $x=2$
minimum value $=-1$, attained at $x=0$
2. (a) increasing on $[0,2]$
decreasing on $(-\infty, 0]$ and $[2, \infty)$
local minimum at $(x, y)=(0,2)$
local maximum at $(x, y)=(2,6)$
(b) concave up on $(-\infty, 1]$
concave down on $[1, \infty)$
inflection point at $(x, y)=(1,4)$
(c)

3. minimum cost $=\$ 270$, attained when the dimensions are $3 \mathrm{~m} \times 6 \mathrm{~m} \times \frac{10}{9} \mathrm{~m}$.
4. $s(t)=t^{5}-2 t^{3}+t$
5. (a) $28 / 15$
(b) 10
(c) 0
(d) $-\frac{1}{2} e^{-t^{2}}+C$
(e) $\ln (\ln s)+C$
