1. (a) The area represented by $\int_{-1}^{1} 2|x| d x$ consists of two right triangles above the x-axis with hight 2 and base 1 . Therefore the integral is equal to 2 .
(b) Note that the graph of $y=\sqrt{4-x^{2}}$ is the first quadrant of the circle centred at $(0,0)$ and of radius 2 . Therefore the graph of $\sqrt{4-x^{2}}+2$ is such a graph shifted up by 2 , and the area represented by $\int_{0}^{2}\left(\sqrt{4-x^{2}}+2\right) d x$ is equal to the area of the sector plus the area of a 2×2 square, that is $\pi+4$.
2.

$$
\text { (a) } \begin{aligned}
& \int_{0}^{1} 6 x\left(1+x^{2}\right) d x \\
&= \int_{0}^{1} 6 x+6 x^{3} d x \\
&= {\left[6 \frac{x^{2}}{2}+6 \frac{x^{4}}{4}\right]_{0}^{1} } \\
&= {\left[3 x^{2}+3 \frac{x^{4}}{2}\right]_{0}^{1} } \\
&=3+\frac{3}{2} \\
&==\frac{9}{2} \\
& \text { (b) } \begin{aligned}
& \int_{1}^{4} \frac{\sqrt{x}-4}{x^{2}} d x \\
= & \int_{1}^{4} \frac{\sqrt{x}}{x^{2}}-\frac{4}{x^{2}} d x \\
= & \int_{1}^{4} x^{-3 / 2}-4 x^{-2} d x \\
= & {\left[-2 x^{-1 / 2}+4 x^{-1}\right]_{1}^{4} } \\
= & {\left[-\frac{2}{\sqrt{x}}+\frac{4}{x}\right]_{1}^{4} } \\
= & (-1+1)-(-2+4) \\
= & =-2
\end{aligned}
\end{aligned}
$$

3. (a) The displacement equals the integral of $v(t)$ over $[0, \pi]$, i.e.

$$
\int_{0}^{\pi}(2 \cos t-1) d t=[2 \sin t-t]_{0}^{\pi}=-\pi
$$

(b) The distance traveled equals the integral of $|v(t)|$ over $[0, \pi]$. Notice that $v(t)>0$ if $t<\pi / 3$, and $v(t)<0$ if $t>\pi / 3$. Therefore

$$
\int_{0}^{\pi}|v(t)| d t=\int_{0}^{\pi / 3} v(t) d t+\int_{\pi / 3}^{\pi}-v(t) d t
$$

where

$$
\int_{0}^{\pi / 3} v(t) d t=[2 \sin t-t]_{0}^{\pi / 3}=\sqrt{3}-\frac{\pi}{3}
$$

and

$$
\int_{\pi / 3}^{\pi} v(t) d t=[2 \sin t-t]_{\pi / 3}^{\pi}=(0-\pi)-\left(\sqrt{3}-\frac{\pi}{3}\right) .
$$

So

$$
\int_{0}^{\pi}|v(t)| d t=2\left(\sqrt{3}-\frac{\pi}{3}\right)+\pi=2 \sqrt{3}+\frac{\pi}{3}
$$

