Math 231 Worksheet 5

1. Find the absolute maximum and absolute minimum of f on the given interval.

$$
f(x)=2 x^{3}-3 x^{2}+4, \quad[-1,2] .
$$

2. A box with a square base and open top must have a volume of $4000 \mathrm{~cm}^{3}$. Find the dimensions of the box that minimize the amount of material used.

Solutions:

1. To find the critical numbers, set

$$
f^{\prime}(x)=6 x^{2}-6 x=0
$$

that is,

$$
6 x(x-1)=0 .
$$

Therefore $x=0$ and $x=1$ are the critical numbers. The corresponding critical points are $(0,4)$ and $(1,3)$. Next, the endpoints are $(-1,-1)$ and $(2,8)$.

So the maximum of f is $\max \{4,3,-1,8\}=8$, attained at $x=2$; the minimum of f is $\max \{4,3,-1,8\}=-1$, attained at $x=-1$.
2. Denote the dimension of the square base by x and the height of the box by y. We need to minimize the area of the box (with open top)

$$
A=x^{2}+4 x y
$$

subject to the volume constraint

$$
V=x^{2} y=4000
$$

Solving from the constraint we get

$$
y=\frac{4000}{x^{2}} .
$$

Therefore we can write

$$
A(x)=x^{2}+4 x \frac{4000}{x^{2}}=x^{2}+\frac{16000}{x}
$$

where $x>0$ can be any positive real number.
To minimize $A(x)$ we find the critical number(s) by solving

$$
A^{\prime}(x)=2 x-\frac{16000}{x^{2}}=0 .
$$

This equation gives a unique critical number $x=\sqrt[3]{8000}=20$. One can easily verify, for example by the 1 st derivative test, that $A(x)$ attains an absolute minimum at $x=20$.

To conclude, when the dimensions $x=20 \mathrm{~cm}$ and $y=\frac{4000}{20^{2}}=10 \mathrm{~cm}$, the material for making the box is minimized.

