1 (a). $-\frac{2}{x^{2}+1}$
1 (b). $-\ln (1-x)$
2 (a). Converges to 1 , since

$$
\lim _{n \rightarrow \infty} \frac{n^{2}+1}{n^{2}+n}=\lim _{x \rightarrow \infty} \frac{x^{2}+1}{x^{2}+x}=\lim _{x \rightarrow \infty} \frac{2 x}{2 x+1}=\lim _{x \rightarrow \infty} \frac{2}{2}=1
$$

where L'Hospital's rule has been applied twice.
2 (b). Converges to 0 , since

$$
\left|\frac{\sin n}{n}\right| \leq \frac{1}{n} \rightarrow 0, \text { as } n \rightarrow \infty
$$

2 (c). Converges to 0 , since

$$
\begin{aligned}
\frac{2^{n}}{n!} & =\frac{2}{n} \cdot \frac{2}{n-1} \cdots \frac{2}{2} \cdot \frac{2}{1} \\
& \leq \frac{2}{n} \cdot 1 \cdots 1 \cdot 2 \\
& =\frac{4}{n} \rightarrow 0, \text { as } n \rightarrow \infty .
\end{aligned}
$$

