1 (a). Absolutely convergent. Notice that
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The last series converges since it is the p-series with p = 3/2 > 1. By the Comparison Test

the series
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is also convergent. This shows absolute convergence.

1 (b). Conditionally convergent. First, notice that
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Taking b,, = % in the Limit Comparison Test, we see that since the series
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is divergent, the series
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must also be divergent. This shows that
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is mot absolutely convergent. It remains to show that it converges conditionally. By the
Alternating Series Test it suffices to show that the sequence

1
n?+1

decreases monotonically to 0. But this is obvious since the denominator v/n? + 1 increases
to oo.



1 (c). Absolutely convergent. To apply the Root Test, we compute
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Since % < 1, the series

is absolutely convergent.

1 (d). Absolutely convergent. To apply the Ratio Test, we compute
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Since 0 < 1, the series

is convergent. Therefore the original series is absolutely convergent.

Bonus. Divergent, by the Integral Test.



