1 (a). Absolutely convergent. Notice that

$$
\sum_{n=1}^{\infty}\left|\frac{\sin \left(10 n^{2}\right)}{n \sqrt{n}}\right| \leq \sum_{n=1}^{\infty} \frac{1}{n \sqrt{n}}=\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}
$$

The last series converges since it is the p-series with $p=3 / 2>1$. By the Comparison Test the series

$$
\sum_{n=1}^{\infty}\left|\frac{\sin \left(10 n^{2}\right)}{n \sqrt{n}}\right|
$$

is also convergent. This shows absolute convergence.
1 (b). Conditionally convergent. First, notice that

$$
\sum_{n=1}^{\infty}\left|\frac{(-1)^{n}}{\sqrt{n^{2}+1}}\right|=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+1}}
$$

and that

$$
\lim _{n \rightarrow \infty} \frac{\frac{1}{\sqrt{n^{2}+1}}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{2}+1}}=\lim _{n \rightarrow \infty} \sqrt{\frac{n^{2}}{n^{2}+1}}=\sqrt{\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+1}}=1
$$

Taking $b_{n}=\frac{1}{n}$ in the Limit Comparison Test, we see that since the series

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

is divergent, the series

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+1}}
$$

must also be divergent. This shows that

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n^{2}+1}}
$$

is not absolutely convergent. It remains to show that it converges conditionally. By the Alternating Series Test it suffices to show that the sequence

$$
\frac{1}{\sqrt{n^{2}+1}}
$$

decreases monotonically to 0 . But this is obvious since the denominator $\sqrt{n^{2}+1}$ increases to ∞.

1 (c). Absolutely convergent. To apply the Root Test, we compute

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\frac{\left(1+\frac{1}{n}\right)^{n}}{e^{n}}}=\lim _{n \rightarrow \infty} \frac{1+\frac{1}{n}}{e}=\frac{1}{e}
$$

Since $\frac{1}{e}<1$, the series

$$
\sum_{n=1}^{\infty} \frac{\left(1+\frac{1}{n}\right)^{n}}{e^{n}}
$$

is absolutely convergent.
1 (d). Absolutely convergent. To apply the Ratio Test, we compute

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{\left(\frac{10^{n+1}}{(n+1)!}\right)}{\left(\frac{10^{n}}{n!}\right)}=\lim _{n \rightarrow \infty} \frac{n!}{(n+1)!} \cdot \frac{10^{n+1}}{10^{n}}=\lim _{n \rightarrow \infty} \frac{1}{n+1} \cdot 10=0
$$

Since $0<1$, the series

$$
\sum_{n=0}^{\infty}\left|\frac{(-10)^{n}}{n!}\right|
$$

is convergent. Therefore the original series is absolutely convergent.

Bonus. Divergent, by the Integral Test.

