Math 231 Worksheet 8

1. Evaluate the integral by interpreting it in terms of areas.
(a) $\int_{-1}^{1} 2|x| d x$
(b) $\int_{0}^{2}\left(\sqrt{4-x^{2}}+2\right) d x$
2. Evaluate the integral.
(a) $\int_{0}^{1} 6 x\left(1+x^{2}\right) d x$
(b) $\int_{1}^{4} \frac{\sqrt{x}-4}{x^{2}} d x$

Answers:

1. (a) The area represented by $\int_{-1}^{1} 2|x| d x$ consists of two right triangles above the x-axis with hight 2 and base 1 . Therefore the integral is equal to 2 .
(b) Note that the graph of $y=\sqrt{4-x^{2}}$ is the first quadrant of the circle centred at $(0,0)$ and of radius 2 . Therefore the graph of $\sqrt{4-x^{2}}+2$ is such a graph shifted up by 2 , and the area represented by $\int_{0}^{2}\left(\sqrt{4-x^{2}}+2\right) d x$ is equal to the area of the sector plus the area of a 2×2 square, that is $\pi+4$.
2.

(a) $\int_{0}^{1} 6 x\left(1+x^{2}\right) d x$
(b) $\int_{1}^{4} \frac{\sqrt{x}-4}{x^{2}} d x$
$=\int_{0}^{1} 6 x+6 x^{3} d x$
$=\int_{1}^{4} \frac{\sqrt{x}}{x^{2}}-\frac{4}{x^{2}} d x$
$=\left[6 \frac{x^{2}}{2}+6 \frac{x^{4}}{4}\right]_{0}^{1}$
$=\int_{1}^{4} x^{-3 / 2}-4 x^{-2} d x$
$=\left[3 x^{2}+3 \frac{x^{4}}{2}\right]_{0}^{1}$
$=3+\frac{3}{2}$
$=\left[-2 x^{-1 / 2}+4 x^{-1}\right]_{1}^{4}$
$=\left[-\frac{2}{\sqrt{x}}+\frac{4}{x}\right]_{1}^{4}$
$=\frac{9}{2}$
$=(-1+1)-(-2+4)$
$=-2$

