$\mathbf{5 . 3} \# \mathbf{6}(\mathbf{b})(\Rightarrow)$ Suppose $f^{\prime}(c)>0$ for all $c \in(a, b)$. Then for any $x, y \in(a, b)$ with $x<y$, by the Mean Value Theorem we have, for some $c \in(x, y)$,

$$
\frac{f(y)-f(x)}{y-x}=f^{\prime}(c)
$$

or, equivalently,

$$
f(y)-f(x)=f^{\prime}(c)(y-x) .
$$

Since $f^{\prime}(c)>0$ and $y-x>0$, it follows that $f(y)-f(x)>0$, that is, $f(y)>f(x)$. This shows f is strictly increasing, since $f(y)>f(x)$ whenever $x>y$.
(\notin) The converse statement is false. A counter-example is given by $f(x)=x^{3}$ which is strictly increasing on $(-1,1)$, but with $f^{\prime}(0)=0$.
5.3\#17(e) Take $f(x)=\sin (x)$. Note that f is differentiable on $(-\infty, \infty)$ and $f^{\prime}(x)=\cos (x)$. Suppose $x<y$. By the Mean Value Theorem, we have for some $c \in(x, y)$,

$$
f(y)-f(x)=f^{\prime}(c)(x-y)
$$

Therefore

$$
|\sin (y)-\sin (x)|=|\cos (c)||x-y|
$$

But $|\cos (c)| \leq 1$. So we obtain

$$
|\sin (y)-\sin (x)| \leq|x-y| .
$$

If $x>y$, then reverting x and y in the argument above gives that same bound. Finally, if $x=y$, then trivially

$$
|\sin (y)-\sin (x)|=0 \leq|x-y|
$$

Therefore $|\sin (y)-\sin (x)| \leq|x-y|$ holds for all x and y.
For the second part of the question, notice that $\operatorname{since} \sin (x)$ is an odd function, we have $\sin (x)=-\sin (-x)$. Therefore, applying the inequality proven above, we get

$$
|\sin (y)+\sin (x)|=|\sin (y)-\sin (-x)| \leq|y-(-x)|=|y+x|
$$

This shows

$$
|\sin (y)+\sin (x)| \leq|y+x| .
$$

5.4\# $\mathbf{9}$ Suppose $f^{\prime \prime}(x)=0$. Then by Corollary 5.3.7(a), we have

$$
f^{\prime}(x)=a
$$

for some constant a. Let $g(x)=a x$, then $f^{\prime}(x)=g^{\prime}(x)$ for all x. So by Corollary 5.3.7(b), we must have

$$
f(x)=g(x)+b
$$

for some constant b. This shows

$$
f(x)=a x+b,
$$

as desired.

