6.1\#2 The proof is the same as that of Lemma 6.1 .5 , with m_{i} replaced by M_{i}, and ' \leq ' replaced by ' \geq '. Note how to pass from $Q=P \cup\{c\}$ to general refinements of P.
6.1\#6 Since $\underline{\int_{a}^{b} f}$ is defined as the sup of the lower sums, it suffices to show that

$$
L(P, f) \geq 0
$$

for any partition P. However, since $f \geq 0$, we have

$$
L(P, f)=\sum_{k=1}^{n} m_{k}(f) \Delta x_{k} \geq 0
$$

as each $m_{k}(f) \geq 0$.
6.1\#8 Suppose $P=\left\{x_{k}\right\}_{k=1}^{n}$. Note that, since

$$
f(x)+g(x) \leq \sup _{\left[x_{k-1}, x_{k}\right]} f+\sup _{\left[x_{k-1}, x_{k}\right]} g
$$

for all $x \in\left[x_{k-1}, x_{k}\right]$, we have

$$
\sup _{\left[x_{k-1}, x_{k}\right]}(f+g) \leq \sup _{\left[x_{k-1}, x_{k}\right]} f+\sup _{\left[x_{k-1}, x_{k}\right]} g .
$$

In other words,

$$
M_{k}(f+g) \leq M_{k}(f)+M_{k}(g)
$$

Therefore

$$
\begin{aligned}
U(P, f+g) & =\sum_{k=1}^{n} M_{k}(f+g) \Delta x_{k} \\
& \leq \sum_{k=1}^{n}\left(M_{k}(f)+M_{k}(g)\right) \Delta x_{k} \\
& =\sum_{k=1}^{n} M_{k}(f) \Delta x_{k}+\sum_{k=1}^{n} M_{k}(g) \Delta x_{k} \\
& =U(P, f)+U(P, g) .
\end{aligned}
$$

This proves the inequality.

