2.1\#5 Assume that $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to A. By definition for any $\varepsilon>0$, there exists n^{*} such that

$$
\left|a_{n}-A\right|<\varepsilon, \forall n \geq n^{*}
$$

By the triangle inequality we have

$$
\left|\left|a_{n}\right|-|A|\right| \leq\left|a_{n}-A\right| .
$$

So it follows that

$$
\left|\left|a_{n}\right|-|A|\right|<\varepsilon, \forall n \geq n^{*}
$$

This shows that $\left\{\left|a_{n}\right|\right\}_{n=1}^{\infty}$ converges to $|A|$.
The converse is false. Consider $a_{n}=(-1)^{n}$. Then $\left\{\left|a_{n}\right|=1\right\}_{n=1}^{\infty}$ converges to 1. But $\left\{a_{n}=(-1)^{n}\right\}_{n=1}^{\infty}$ diverges.
2.1\#12 By Theorem 2.1.12, since $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to $A \neq 0$, there exists n^{*} such that

$$
\left|a_{n}\right| \geq \frac{|A|}{2}, \forall n \geq n^{*}
$$

From this we get

$$
\frac{1}{\left|a_{n}\right|} \leq \frac{2}{|A|}, \forall n \geq n^{*}
$$

On the other hand, by the assumption we have $a_{n} \neq 0, \forall n \geq 1$. So we can take

$$
M=\max \left\{\frac{1}{\left|a_{1}\right|}, \cdots, \frac{1}{\left|a_{n^{*}-1}\right|}, \frac{2}{|A|}\right\}
$$

so that

$$
\frac{1}{\left|a_{n}\right|} \leq M, \forall n \geq 1
$$

This shows $\left\{\frac{1}{a_{n}}\right\}_{n=1}^{\infty}$ is a bounded sequence.
2.7\#43 Assume for a contradiction that $\left\{a_{n}+b_{n}\right\}$ converges, say

$$
\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=C
$$

for some number C. We also know that $\left\{a_{n}\right\}$ converges, say

$$
\lim _{n \rightarrow \infty} a_{n}=A
$$

By Theorem 2.2.1(a), we then have

$$
\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty}\left\{\left(a_{n}+b_{n}\right)-a_{n}\right\}=C-A .
$$

This contradicts the assumption that $\left\{b_{n}\right\}$ diverges. Thus $\left\{a_{n}+b_{n}\right\}$ must diverge.

