2.2\#5 Since $\left\{b_{n}\right\}_{n=1}^{\infty}$ is bounded, there exists $M>0$ such that

$$
\left|b_{n}\right| \leq M, \forall n \geq 1
$$

It follows that

$$
0 \leq\left|a_{n} b_{n}\right| \leq M\left|a_{n}\right|, \quad \forall n \geq 1
$$

Since $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to 0 , by Theorem 2.1.14 we have $\left\{\left|a_{n}\right|\right\}_{n=1}^{\infty}$ converges 0 , and therefore

$$
\lim _{n \rightarrow \infty} M\left|a_{n}\right|=0
$$

By the squeeze theorem, it follows that

$$
\lim _{n \rightarrow \infty}\left|a_{n} b_{n}\right|=0
$$

By Theorem 2.1.14 again, we then have

$$
\lim _{n \rightarrow \infty} a_{n} b_{n}=0
$$

as desired.
2.2\#8(b) Consider

$$
a_{n}=0, \quad b_{n}=\frac{1}{n}, \quad n \geq 1
$$

Then

$$
a_{n}<b_{n}, \forall n \geq 1
$$

But

$$
A=\lim _{n \rightarrow \infty} a_{n}=0, \quad B=\lim _{n \rightarrow \infty} b_{n}=0
$$

Thus it is incorrect to conclude $A<B$.
2.2\#12 Consider

$$
a_{n}=\frac{1}{n}, \quad b_{n}=n, \quad n \geq 1
$$

Then, clearly

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

On the other hand,

$$
a_{n} b_{n}=1, \forall n \geq 1
$$

Thus it is not necessarily true that

$$
\lim _{n \rightarrow \infty} a_{n} b_{n}=0
$$

2.3\#2(a) To show

$$
\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\infty
$$

for any given $M>0$, we need to find an n^{*} such that

$$
a_{n}+b_{n}>M, \forall n \geq n^{*}
$$

However, we know that $\left\{a_{n}\right\}$ diverges to ∞. Therefore, with K denoting a lower bound of $\left\{b_{n}\right\}$, we can find an n^{*} such that

$$
a_{n}>M-K, \forall n \geq n^{*}
$$

It follows that, with this n^{*}, for all $n \geq n^{*}$ we have

$$
a_{n}+b_{n}>(M-K)+K=M, \forall n \geq n^{*},
$$

as desired.
The limit

$$
\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\infty
$$

may not hold if $\left\{b_{n}\right\}$ is not assumed bounded below. For instance, consider

$$
a_{n}=n, \quad b_{n}=-n .
$$

Then clearly

$$
\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=0 \neq \infty
$$

