2.4\#1 An example is given by

$$
a_{n}=n+(-1)^{n}, n \geq 1
$$

which diverges to $+\infty$ by Theorem 2.3.3(a), but is not eventually increasing as

$$
a_{2 n}-a_{2 n+1}=1>0
$$

2.4\#2 An example is given by

$$
a_{n}=1-\frac{1}{n}, n \geq 1
$$

which converges to 1 , but does not attain a maximum since it is strictly increasing.
$\mathbf{2 . 5 \# 5}(\Rightarrow)$ Let $M=\sup S$. Suppose $M<\infty$. Clearly, M is an upper bound of S. To find $\left\{a_{n}\right\}$, notice that for any $n \geq 1, M-\frac{1}{n}$ is not an upper bound of S by the minimality of M. Therefore, there must exist a number in S, say a_{n}, such that

$$
M-\frac{1}{n}<a_{n}
$$

On the other hand, since M is an upper bound of S and $a_{n} \in S$, we also have $a_{n} \leq M$. Thus

$$
M-\frac{1}{n}<a_{n} \leq M, \forall n \geq 1
$$

Taking $n \rightarrow \infty$, by the squeeze theorem, it follows that

$$
\lim _{n \rightarrow \infty} a_{n}=M
$$

The case $M=\infty$ can be treated similarly.
(\Leftarrow) To show that M is the least upper bound, it suffices to show any other upper bound M^{\prime} satisfies

$$
M \leq M^{\prime}
$$

Since M^{\prime} is an upper bound of S and $a_{n} \in S$, we have, for all $n \geq 1$,

$$
a_{n} \leq M^{\prime}
$$

Taking $n \rightarrow \infty$, by Theorem 2.2.1(f), we obtain,

$$
\lim _{n \rightarrow \infty} a_{n} \leq M^{\prime}
$$

By assumption $\lim _{n \rightarrow \infty} a_{n}=M$. Thus

$$
M \leq M^{\prime}
$$

as desired.

