2.4#1 An example is given by

$$a_n = n + (-1)^n, \ n \ge 1$$

which diverges to $+\infty$ by Theorem 2.3.3(a), but is not eventually increasing as

$$a_{2n} - a_{2n+1} = 1 > 0.$$

2.4#2 An example is given by

$$a_n = 1 - \frac{1}{n}, \ n \ge 1$$

which converges to 1, but does not attain a maximum since it is strictly increasing.

2.5#5 (\Rightarrow) Let $M = \sup S$. Suppose $M < \infty$. Clearly, M is an upper bound of S. To find $\{a_n\}$, notice that for any $n \ge 1$, $M - \frac{1}{n}$ is not an upper bound of S by the minimality of M. Therefore, there must exist a number in S, say a_n , such that

$$M - \frac{1}{n} < a_n.$$

On the other hand, since M is an upper bound of S and $a_n \in S$, we also have $a_n \leq M$. Thus

$$M - \frac{1}{n} < a_n \le M, \ \forall n \ge 1.$$

Taking $n \to \infty$, by the squeeze theorem, it follows that

$$\lim_{n \to \infty} a_n = M.$$

The case $M = \infty$ can be treated similarly.

(\Leftarrow) To show that M is the least upper bound, it suffices to show any other upper bound M' satisfies

 $M \leq M'$.

Since M' is an upper bound of S and $a_n \in S$, we have, for all $n \ge 1$,

 $a_n \leq M'$.

Taking $n \to \infty$, by Theorem 2.2.1(f), we obtain,

$$\lim_{n \to \infty} a_n \le M'.$$

By assumption $\lim_{n\to\infty} a_n = M$. Thus

 $M \leq M'$,

as desired.