3.1\#12 Given $\varepsilon>0$, we need to find $M>a$ such that

$$
|f(g(x))-L|<\varepsilon, \forall x \geq M
$$

By the assumption that $\lim _{y \rightarrow \infty} f(y)=L$, there exists $K>a$ such that

$$
|f(y)-L|<\varepsilon, \forall y \geq K
$$

Therefore if $y=g(x) \geq K$, we would have

$$
|f(g(x))-L|<\varepsilon .
$$

On the other hand, by the assumption that $\lim _{x \rightarrow \infty} g(x)=\infty$, for this K there exists $M>a$ such that

$$
g(x) \geq K, \forall x \geq M
$$

So, combining the above, we see that

$$
|f(g(x))-L|<\varepsilon
$$

as long as $x \geq M$. This completes the proof.
$\mathbf{3 . 2 \# 4} \mathbf{(a \Rightarrow b})$ To show that the sequence $\left\{f\left(x_{n}\right)\right\}$ converges to L, for any given $\varepsilon>0$ we need to find n^{*} such that

$$
\left|f\left(x_{n}\right)-L\right|<\varepsilon, \forall n \geq n^{*}
$$

Since $\lim _{x \rightarrow a} f(x)=L$, by definition for the $\varepsilon>0$ above, there exists $\delta>0$ such that

$$
|f(x)-L|<\varepsilon \text { whenever } 0<|x-a|<\delta, x \in D
$$

For this $\delta>0$, since $\left\{x_{n}\right\}$ converges to a, there exists n_{1}^{*} such that

$$
\left|x_{n}-a\right|<\delta, \forall n \geq n_{1}^{*} .
$$

On the other hand, by assumption there exists n_{2}^{*} such that

$$
x_{n} \neq a, \quad \forall n \geq n_{2}^{*}
$$

If we let $n^{*}=\max \left(n_{1}^{*}, n_{2}^{*}\right)$, then it holds that

$$
0<\left|x_{n}-a\right|<\delta, x_{n} \in D, \forall n \geq n^{*}
$$

Thus for this n^{*}, we have

$$
\left|f\left(x_{n}\right)-L\right|<\varepsilon, \forall n \geq n^{*}
$$

as desired.
3.3\#3 Note that

$$
f(x)=\frac{x}{x-1}
$$

is well defined for $x>1$. To show

$$
\lim _{x \rightarrow 1^{+}} \frac{x}{x-1}=+\infty
$$

for any $M>0$ we need to find $\delta>0$ such that

$$
\frac{x}{x-1}>M \text { whenever } 0<x-1<\delta .
$$

Since $x>1$ (i.e. $x-1>0$), we have

$$
\frac{x}{x-1}>\frac{1}{x-1} .
$$

Thus it suffices to have

$$
\frac{1}{x-1}>M
$$

or equivalently (again, using $x-1>0$),

$$
x-1<\frac{1}{M} .
$$

If we choose $\delta=\frac{1}{M}>0$, then provided $0<x-1<\delta$, we have

$$
\frac{x}{x-1}>M
$$

as desired.

