
3.1#12 Given ε > 0, we need to find M > a such that

|f(g(x))− L| < ε, ∀x ≥M.

By the assumption that limy→∞ f(y) = L, there exists K > a such that

|f(y)− L| < ε, ∀y ≥ K.

Therefore if y = g(x) ≥ K, we would have

|f(g(x))− L| < ε.

On the other hand, by the assumption that limx→∞ g(x) =∞, for this K there exists M > a
such that

g(x) ≥ K, ∀x ≥M.

So, combining the above, we see that

|f(g(x))− L| < ε

as long as x ≥M . This completes the proof.

3.2#4(a⇒b) To show that the sequence {f(xn)} converges to L, for any given ε > 0 we
need to find n∗ such that

|f(xn)− L| < ε, ∀n ≥ n∗.

Since limx→a f(x) = L, by definition for the ε > 0 above, there exists δ > 0 such that

|f(x)− L| < ε whenever 0 < |x− a| < δ, x ∈ D.

For this δ > 0, since {xn} converges to a, there exists n∗1 such that

|xn − a| < δ, ∀n ≥ n∗1.

On the other hand, by assumption there exists n∗2 such that

xn 6= a, ∀n ≥ n∗2.

If we let n∗ = max(n∗1, n
∗
2), then it holds that

0 < |xn − a| < δ, xn ∈ D, ∀n ≥ n∗.

Thus for this n∗, we have
|f(xn)− L| < ε, ∀n ≥ n∗,

as desired.



3.3#3 Note that

f(x) =
x

x− 1

is well defined for x > 1. To show

lim
x→1+

x

x− 1
= +∞,

for any M > 0 we need to find δ > 0 such that

x

x− 1
> M whenever 0 < x− 1 < δ.

Since x > 1 (i.e. x− 1 > 0), we have

x

x− 1
>

1

x− 1
.

Thus it suffices to have
1

x− 1
> M,

or equivalently (again, using x− 1 > 0),

x− 1 <
1

M
.

If we choose δ = 1
M
> 0, then provided 0 < x− 1 < δ, we have

x

x− 1
> M,

as desired.


