3.1#12 Given $\varepsilon > 0$, we need to find M > a such that

$$|f(g(x)) - L| < \varepsilon, \ \forall x \ge M$$

By the assumption that $\lim_{y\to\infty} f(y) = L$, there exists K > a such that

$$|f(y) - L| < \varepsilon, \ \forall y \ge K.$$

Therefore if $y = g(x) \ge K$, we would have

$$|f(g(x)) - L| < \varepsilon.$$

On the other hand, by the assumption that $\lim_{x\to\infty} g(x) = \infty$, for this K there exists M > a such that

$$g(x) \ge K, \ \forall x \ge M.$$

So, combining the above, we see that

$$|f(g(x)) - L| < \varepsilon$$

as long as $x \ge M$. This completes the proof.

3.2#4(a\Rightarrowb) To show that the sequence $\{f(x_n)\}$ converges to L, for any given $\varepsilon > 0$ we need to find n^* such that

$$|f(x_n) - L| < \varepsilon, \ \forall n \ge n^*.$$

Since $\lim_{x\to a} f(x) = L$, by definition for the $\varepsilon > 0$ above, there exists $\delta > 0$ such that

$$|f(x) - L| < \varepsilon$$
 whenever $0 < |x - a| < \delta$, $x \in D$.

For this $\delta > 0$, since $\{x_n\}$ converges to a, there exists n_1^* such that

$$|x_n - a| < \delta, \ \forall n \ge n_1^*.$$

On the other hand, by assumption there exists n_2^* such that

$$x_n \neq a, \ \forall n \ge n_2^*.$$

If we let $n^* = \max(n_1^*, n_2^*)$, then it holds that

$$0 < |x_n - a| < \delta, \ x_n \in D, \ \forall n \ge n^*.$$

Thus for this n^* , we have

 $|f(x_n) - L| < \varepsilon, \ \forall n \ge n^*,$

as desired.

3.3#3 Note that

$$f(x) = \frac{x}{x-1}$$

is well defined for x > 1. To show

$$\lim_{x \to 1^+} \frac{x}{x-1} = +\infty,$$

for any M > 0 we need to find $\delta > 0$ such that

$$\frac{x}{x-1} > M$$
 whenever $0 < x - 1 < \delta.$

Since x > 1 (i.e. x - 1 > 0), we have

$$\frac{x}{x-1} > \frac{1}{x-1}.$$

Thus it suffices to have

$$\frac{1}{x-1} > M,$$

or equivalently (again, using x - 1 > 0),

$$x - 1 < \frac{1}{M}.$$

If we choose $\delta = \frac{1}{M} > 0$, then provided $0 < x - 1 < \delta$, we have

$$\frac{x}{x-1} > M,$$

as desired.